A Segmented Iterative Learning Scheme-Based Distributed Fault Estimation for Switched Interconnected Nonlinear Systems

In this article, a distributed fault estimation (DFE) approach for switched interconnected nonlinear systems (SINSs) with time delays and external disturbances is proposed using a novel segmented iterative learning scheme (SILS). First, through the utilization of interrelated information among subsy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-05, Vol.PP, p.1-15
Hauptverfasser: Xu, Shuiqing, Wang, Lejing, Dai, Haosong, Wang, Hai, Chen, Hongtian, Chai, Yi, Zheng, Wei Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transaction on neural networks and learning systems
container_volume PP
creator Xu, Shuiqing
Wang, Lejing
Dai, Haosong
Wang, Hai
Chen, Hongtian
Chai, Yi
Zheng, Wei Xing
description In this article, a distributed fault estimation (DFE) approach for switched interconnected nonlinear systems (SINSs) with time delays and external disturbances is proposed using a novel segmented iterative learning scheme (SILS). First, through the utilization of interrelated information among subsystems, a distributed iterative learning observer is developed to enhance the accuracy of fault estimation results, which can realize the fault estimation of all subsystems under time delays and external disturbances. Simultaneously, to facilitate rapid fault information tracking and significantly reduce sensitivity to interference, a new SILS-based fault estimation law is constructed by combining the idea of segmented design with the method of variable gain. Then, an assessment of the convergence of the established fault estimation methodology is conducted, and the configurations of observer gain matrices and iterative learning gain matrices are duly accomplished. Finally, simulation results are showcased to demonstrate the superiority and feasibility of the developed fault estimation approach.
doi_str_mv 10.1109/TNNLS.2024.3394570
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050937235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10517989</ieee_id><sourcerecordid>3050937235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-e9917ce43e873cdbf894fe9e4f4b9a562beaad914e27d6ac9d375d3d26300a533</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoKro_ICK99KYzTZqmufRjU2HMi07wrqTpqUbaVJN04r83dXN4bnIgz_vAeRE6S_A0SbC4Wi2Xi2JKMEmnlIqUcbyHjkmSkZjQPN_f7fzlCE2ce8dhMsyyVByiI5pzjEXGjtH6OirgtQPjoY4ePVjp9RqiBUhrtHmNCvUGHcQ30oX_O-281dUwsnM5tD6aOa-7EOlN1PQ2Kr60D4FgCj6remNAjfCyN602wRkV385D507RQSNbB5Pte4Ke57PV7UO8eLp_vL1exIpw5mMQIuEKUgo5p6qumlykDQhIm7QSkmWkAilrkaRAeJ1JJWrKWU1rklGMJaP0BF1uvB-2_xzA-bLTTkHbSgP94EqKGRaUE8oCSjaosr1zFpryw4bb7HeZ4HKsvPytvBwrL7eVh9DF1j9UHdS7yF_BATjfABoA_hlZwkUu6A-M1oey</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050937235</pqid></control><display><type>article</type><title>A Segmented Iterative Learning Scheme-Based Distributed Fault Estimation for Switched Interconnected Nonlinear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Shuiqing ; Wang, Lejing ; Dai, Haosong ; Wang, Hai ; Chen, Hongtian ; Chai, Yi ; Zheng, Wei Xing</creator><creatorcontrib>Xu, Shuiqing ; Wang, Lejing ; Dai, Haosong ; Wang, Hai ; Chen, Hongtian ; Chai, Yi ; Zheng, Wei Xing</creatorcontrib><description>In this article, a distributed fault estimation (DFE) approach for switched interconnected nonlinear systems (SINSs) with time delays and external disturbances is proposed using a novel segmented iterative learning scheme (SILS). First, through the utilization of interrelated information among subsystems, a distributed iterative learning observer is developed to enhance the accuracy of fault estimation results, which can realize the fault estimation of all subsystems under time delays and external disturbances. Simultaneously, to facilitate rapid fault information tracking and significantly reduce sensitivity to interference, a new SILS-based fault estimation law is constructed by combining the idea of segmented design with the method of variable gain. Then, an assessment of the convergence of the established fault estimation methodology is conducted, and the configurations of observer gain matrices and iterative learning gain matrices are duly accomplished. Finally, simulation results are showcased to demonstrate the superiority and feasibility of the developed fault estimation approach.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2024.3394570</identifier><identifier>PMID: 38700965</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Control systems ; Delay effects ; Distributed fault estimation (DFE) ; Estimation ; fault estimation law ; Iterative methods ; Nonlinear systems ; Observers ; segmented iterative learning scheme (SILS) ; switched interconnected nonlinear systems (SINSs) ; Switches</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-05, Vol.PP, p.1-15</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3081-3726 ; 0000-0003-2789-9530 ; 0000-0002-8600-9668 ; 0000-0002-0572-5938 ; 0000-0001-7373-8979 ; 0000-0002-8637-8682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10517989$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10517989$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38700965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Shuiqing</creatorcontrib><creatorcontrib>Wang, Lejing</creatorcontrib><creatorcontrib>Dai, Haosong</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><creatorcontrib>Chen, Hongtian</creatorcontrib><creatorcontrib>Chai, Yi</creatorcontrib><creatorcontrib>Zheng, Wei Xing</creatorcontrib><title>A Segmented Iterative Learning Scheme-Based Distributed Fault Estimation for Switched Interconnected Nonlinear Systems</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In this article, a distributed fault estimation (DFE) approach for switched interconnected nonlinear systems (SINSs) with time delays and external disturbances is proposed using a novel segmented iterative learning scheme (SILS). First, through the utilization of interrelated information among subsystems, a distributed iterative learning observer is developed to enhance the accuracy of fault estimation results, which can realize the fault estimation of all subsystems under time delays and external disturbances. Simultaneously, to facilitate rapid fault information tracking and significantly reduce sensitivity to interference, a new SILS-based fault estimation law is constructed by combining the idea of segmented design with the method of variable gain. Then, an assessment of the convergence of the established fault estimation methodology is conducted, and the configurations of observer gain matrices and iterative learning gain matrices are duly accomplished. Finally, simulation results are showcased to demonstrate the superiority and feasibility of the developed fault estimation approach.</description><subject>Control systems</subject><subject>Delay effects</subject><subject>Distributed fault estimation (DFE)</subject><subject>Estimation</subject><subject>fault estimation law</subject><subject>Iterative methods</subject><subject>Nonlinear systems</subject><subject>Observers</subject><subject>segmented iterative learning scheme (SILS)</subject><subject>switched interconnected nonlinear systems (SINSs)</subject><subject>Switches</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoKro_ICK99KYzTZqmufRjU2HMi07wrqTpqUbaVJN04r83dXN4bnIgz_vAeRE6S_A0SbC4Wi2Xi2JKMEmnlIqUcbyHjkmSkZjQPN_f7fzlCE2ce8dhMsyyVByiI5pzjEXGjtH6OirgtQPjoY4ePVjp9RqiBUhrtHmNCvUGHcQ30oX_O-281dUwsnM5tD6aOa-7EOlN1PQ2Kr60D4FgCj6remNAjfCyN602wRkV385D507RQSNbB5Pte4Ke57PV7UO8eLp_vL1exIpw5mMQIuEKUgo5p6qumlykDQhIm7QSkmWkAilrkaRAeJ1JJWrKWU1rklGMJaP0BF1uvB-2_xzA-bLTTkHbSgP94EqKGRaUE8oCSjaosr1zFpryw4bb7HeZ4HKsvPytvBwrL7eVh9DF1j9UHdS7yF_BATjfABoA_hlZwkUu6A-M1oey</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>Xu, Shuiqing</creator><creator>Wang, Lejing</creator><creator>Dai, Haosong</creator><creator>Wang, Hai</creator><creator>Chen, Hongtian</creator><creator>Chai, Yi</creator><creator>Zheng, Wei Xing</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3081-3726</orcidid><orcidid>https://orcid.org/0000-0003-2789-9530</orcidid><orcidid>https://orcid.org/0000-0002-8600-9668</orcidid><orcidid>https://orcid.org/0000-0002-0572-5938</orcidid><orcidid>https://orcid.org/0000-0001-7373-8979</orcidid><orcidid>https://orcid.org/0000-0002-8637-8682</orcidid></search><sort><creationdate>20240503</creationdate><title>A Segmented Iterative Learning Scheme-Based Distributed Fault Estimation for Switched Interconnected Nonlinear Systems</title><author>Xu, Shuiqing ; Wang, Lejing ; Dai, Haosong ; Wang, Hai ; Chen, Hongtian ; Chai, Yi ; Zheng, Wei Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-e9917ce43e873cdbf894fe9e4f4b9a562beaad914e27d6ac9d375d3d26300a533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control systems</topic><topic>Delay effects</topic><topic>Distributed fault estimation (DFE)</topic><topic>Estimation</topic><topic>fault estimation law</topic><topic>Iterative methods</topic><topic>Nonlinear systems</topic><topic>Observers</topic><topic>segmented iterative learning scheme (SILS)</topic><topic>switched interconnected nonlinear systems (SINSs)</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shuiqing</creatorcontrib><creatorcontrib>Wang, Lejing</creatorcontrib><creatorcontrib>Dai, Haosong</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><creatorcontrib>Chen, Hongtian</creatorcontrib><creatorcontrib>Chai, Yi</creatorcontrib><creatorcontrib>Zheng, Wei Xing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Shuiqing</au><au>Wang, Lejing</au><au>Dai, Haosong</au><au>Wang, Hai</au><au>Chen, Hongtian</au><au>Chai, Yi</au><au>Zheng, Wei Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Segmented Iterative Learning Scheme-Based Distributed Fault Estimation for Switched Interconnected Nonlinear Systems</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-05-03</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this article, a distributed fault estimation (DFE) approach for switched interconnected nonlinear systems (SINSs) with time delays and external disturbances is proposed using a novel segmented iterative learning scheme (SILS). First, through the utilization of interrelated information among subsystems, a distributed iterative learning observer is developed to enhance the accuracy of fault estimation results, which can realize the fault estimation of all subsystems under time delays and external disturbances. Simultaneously, to facilitate rapid fault information tracking and significantly reduce sensitivity to interference, a new SILS-based fault estimation law is constructed by combining the idea of segmented design with the method of variable gain. Then, an assessment of the convergence of the established fault estimation methodology is conducted, and the configurations of observer gain matrices and iterative learning gain matrices are duly accomplished. Finally, simulation results are showcased to demonstrate the superiority and feasibility of the developed fault estimation approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38700965</pmid><doi>10.1109/TNNLS.2024.3394570</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3081-3726</orcidid><orcidid>https://orcid.org/0000-0003-2789-9530</orcidid><orcidid>https://orcid.org/0000-0002-8600-9668</orcidid><orcidid>https://orcid.org/0000-0002-0572-5938</orcidid><orcidid>https://orcid.org/0000-0001-7373-8979</orcidid><orcidid>https://orcid.org/0000-0002-8637-8682</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-05, Vol.PP, p.1-15
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_3050937235
source IEEE Electronic Library (IEL)
subjects Control systems
Delay effects
Distributed fault estimation (DFE)
Estimation
fault estimation law
Iterative methods
Nonlinear systems
Observers
segmented iterative learning scheme (SILS)
switched interconnected nonlinear systems (SINSs)
Switches
title A Segmented Iterative Learning Scheme-Based Distributed Fault Estimation for Switched Interconnected Nonlinear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Segmented%20Iterative%20Learning%20Scheme-Based%20Distributed%20Fault%20Estimation%20for%20Switched%20Interconnected%20Nonlinear%20Systems&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Xu,%20Shuiqing&rft.date=2024-05-03&rft.volume=PP&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2024.3394570&rft_dat=%3Cproquest_RIE%3E3050937235%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050937235&rft_id=info:pmid/38700965&rft_ieee_id=10517989&rfr_iscdi=true