A Segmented Iterative Learning Scheme-Based Distributed Fault Estimation for Switched Interconnected Nonlinear Systems
In this article, a distributed fault estimation (DFE) approach for switched interconnected nonlinear systems (SINSs) with time delays and external disturbances is proposed using a novel segmented iterative learning scheme (SILS). First, through the utilization of interrelated information among subsy...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-05, Vol.PP, p.1-15 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | PP |
creator | Xu, Shuiqing Wang, Lejing Dai, Haosong Wang, Hai Chen, Hongtian Chai, Yi Zheng, Wei Xing |
description | In this article, a distributed fault estimation (DFE) approach for switched interconnected nonlinear systems (SINSs) with time delays and external disturbances is proposed using a novel segmented iterative learning scheme (SILS). First, through the utilization of interrelated information among subsystems, a distributed iterative learning observer is developed to enhance the accuracy of fault estimation results, which can realize the fault estimation of all subsystems under time delays and external disturbances. Simultaneously, to facilitate rapid fault information tracking and significantly reduce sensitivity to interference, a new SILS-based fault estimation law is constructed by combining the idea of segmented design with the method of variable gain. Then, an assessment of the convergence of the established fault estimation methodology is conducted, and the configurations of observer gain matrices and iterative learning gain matrices are duly accomplished. Finally, simulation results are showcased to demonstrate the superiority and feasibility of the developed fault estimation approach. |
doi_str_mv | 10.1109/TNNLS.2024.3394570 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_3050937235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10517989</ieee_id><sourcerecordid>3050937235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-e9917ce43e873cdbf894fe9e4f4b9a562beaad914e27d6ac9d375d3d26300a533</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoKro_ICK99KYzTZqmufRjU2HMi07wrqTpqUbaVJN04r83dXN4bnIgz_vAeRE6S_A0SbC4Wi2Xi2JKMEmnlIqUcbyHjkmSkZjQPN_f7fzlCE2ce8dhMsyyVByiI5pzjEXGjtH6OirgtQPjoY4ePVjp9RqiBUhrtHmNCvUGHcQ30oX_O-281dUwsnM5tD6aOa-7EOlN1PQ2Kr60D4FgCj6remNAjfCyN602wRkV385D507RQSNbB5Pte4Ke57PV7UO8eLp_vL1exIpw5mMQIuEKUgo5p6qumlykDQhIm7QSkmWkAilrkaRAeJ1JJWrKWU1rklGMJaP0BF1uvB-2_xzA-bLTTkHbSgP94EqKGRaUE8oCSjaosr1zFpryw4bb7HeZ4HKsvPytvBwrL7eVh9DF1j9UHdS7yF_BATjfABoA_hlZwkUu6A-M1oey</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050937235</pqid></control><display><type>article</type><title>A Segmented Iterative Learning Scheme-Based Distributed Fault Estimation for Switched Interconnected Nonlinear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Shuiqing ; Wang, Lejing ; Dai, Haosong ; Wang, Hai ; Chen, Hongtian ; Chai, Yi ; Zheng, Wei Xing</creator><creatorcontrib>Xu, Shuiqing ; Wang, Lejing ; Dai, Haosong ; Wang, Hai ; Chen, Hongtian ; Chai, Yi ; Zheng, Wei Xing</creatorcontrib><description>In this article, a distributed fault estimation (DFE) approach for switched interconnected nonlinear systems (SINSs) with time delays and external disturbances is proposed using a novel segmented iterative learning scheme (SILS). First, through the utilization of interrelated information among subsystems, a distributed iterative learning observer is developed to enhance the accuracy of fault estimation results, which can realize the fault estimation of all subsystems under time delays and external disturbances. Simultaneously, to facilitate rapid fault information tracking and significantly reduce sensitivity to interference, a new SILS-based fault estimation law is constructed by combining the idea of segmented design with the method of variable gain. Then, an assessment of the convergence of the established fault estimation methodology is conducted, and the configurations of observer gain matrices and iterative learning gain matrices are duly accomplished. Finally, simulation results are showcased to demonstrate the superiority and feasibility of the developed fault estimation approach.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2024.3394570</identifier><identifier>PMID: 38700965</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Control systems ; Delay effects ; Distributed fault estimation (DFE) ; Estimation ; fault estimation law ; Iterative methods ; Nonlinear systems ; Observers ; segmented iterative learning scheme (SILS) ; switched interconnected nonlinear systems (SINSs) ; Switches</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-05, Vol.PP, p.1-15</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3081-3726 ; 0000-0003-2789-9530 ; 0000-0002-8600-9668 ; 0000-0002-0572-5938 ; 0000-0001-7373-8979 ; 0000-0002-8637-8682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10517989$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10517989$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38700965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Shuiqing</creatorcontrib><creatorcontrib>Wang, Lejing</creatorcontrib><creatorcontrib>Dai, Haosong</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><creatorcontrib>Chen, Hongtian</creatorcontrib><creatorcontrib>Chai, Yi</creatorcontrib><creatorcontrib>Zheng, Wei Xing</creatorcontrib><title>A Segmented Iterative Learning Scheme-Based Distributed Fault Estimation for Switched Interconnected Nonlinear Systems</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In this article, a distributed fault estimation (DFE) approach for switched interconnected nonlinear systems (SINSs) with time delays and external disturbances is proposed using a novel segmented iterative learning scheme (SILS). First, through the utilization of interrelated information among subsystems, a distributed iterative learning observer is developed to enhance the accuracy of fault estimation results, which can realize the fault estimation of all subsystems under time delays and external disturbances. Simultaneously, to facilitate rapid fault information tracking and significantly reduce sensitivity to interference, a new SILS-based fault estimation law is constructed by combining the idea of segmented design with the method of variable gain. Then, an assessment of the convergence of the established fault estimation methodology is conducted, and the configurations of observer gain matrices and iterative learning gain matrices are duly accomplished. Finally, simulation results are showcased to demonstrate the superiority and feasibility of the developed fault estimation approach.</description><subject>Control systems</subject><subject>Delay effects</subject><subject>Distributed fault estimation (DFE)</subject><subject>Estimation</subject><subject>fault estimation law</subject><subject>Iterative methods</subject><subject>Nonlinear systems</subject><subject>Observers</subject><subject>segmented iterative learning scheme (SILS)</subject><subject>switched interconnected nonlinear systems (SINSs)</subject><subject>Switches</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoKro_ICK99KYzTZqmufRjU2HMi07wrqTpqUbaVJN04r83dXN4bnIgz_vAeRE6S_A0SbC4Wi2Xi2JKMEmnlIqUcbyHjkmSkZjQPN_f7fzlCE2ce8dhMsyyVByiI5pzjEXGjtH6OirgtQPjoY4ePVjp9RqiBUhrtHmNCvUGHcQ30oX_O-281dUwsnM5tD6aOa-7EOlN1PQ2Kr60D4FgCj6remNAjfCyN602wRkV385D507RQSNbB5Pte4Ke57PV7UO8eLp_vL1exIpw5mMQIuEKUgo5p6qumlykDQhIm7QSkmWkAilrkaRAeJ1JJWrKWU1rklGMJaP0BF1uvB-2_xzA-bLTTkHbSgP94EqKGRaUE8oCSjaosr1zFpryw4bb7HeZ4HKsvPytvBwrL7eVh9DF1j9UHdS7yF_BATjfABoA_hlZwkUu6A-M1oey</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>Xu, Shuiqing</creator><creator>Wang, Lejing</creator><creator>Dai, Haosong</creator><creator>Wang, Hai</creator><creator>Chen, Hongtian</creator><creator>Chai, Yi</creator><creator>Zheng, Wei Xing</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3081-3726</orcidid><orcidid>https://orcid.org/0000-0003-2789-9530</orcidid><orcidid>https://orcid.org/0000-0002-8600-9668</orcidid><orcidid>https://orcid.org/0000-0002-0572-5938</orcidid><orcidid>https://orcid.org/0000-0001-7373-8979</orcidid><orcidid>https://orcid.org/0000-0002-8637-8682</orcidid></search><sort><creationdate>20240503</creationdate><title>A Segmented Iterative Learning Scheme-Based Distributed Fault Estimation for Switched Interconnected Nonlinear Systems</title><author>Xu, Shuiqing ; Wang, Lejing ; Dai, Haosong ; Wang, Hai ; Chen, Hongtian ; Chai, Yi ; Zheng, Wei Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-e9917ce43e873cdbf894fe9e4f4b9a562beaad914e27d6ac9d375d3d26300a533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control systems</topic><topic>Delay effects</topic><topic>Distributed fault estimation (DFE)</topic><topic>Estimation</topic><topic>fault estimation law</topic><topic>Iterative methods</topic><topic>Nonlinear systems</topic><topic>Observers</topic><topic>segmented iterative learning scheme (SILS)</topic><topic>switched interconnected nonlinear systems (SINSs)</topic><topic>Switches</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shuiqing</creatorcontrib><creatorcontrib>Wang, Lejing</creatorcontrib><creatorcontrib>Dai, Haosong</creatorcontrib><creatorcontrib>Wang, Hai</creatorcontrib><creatorcontrib>Chen, Hongtian</creatorcontrib><creatorcontrib>Chai, Yi</creatorcontrib><creatorcontrib>Zheng, Wei Xing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Shuiqing</au><au>Wang, Lejing</au><au>Dai, Haosong</au><au>Wang, Hai</au><au>Chen, Hongtian</au><au>Chai, Yi</au><au>Zheng, Wei Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Segmented Iterative Learning Scheme-Based Distributed Fault Estimation for Switched Interconnected Nonlinear Systems</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-05-03</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this article, a distributed fault estimation (DFE) approach for switched interconnected nonlinear systems (SINSs) with time delays and external disturbances is proposed using a novel segmented iterative learning scheme (SILS). First, through the utilization of interrelated information among subsystems, a distributed iterative learning observer is developed to enhance the accuracy of fault estimation results, which can realize the fault estimation of all subsystems under time delays and external disturbances. Simultaneously, to facilitate rapid fault information tracking and significantly reduce sensitivity to interference, a new SILS-based fault estimation law is constructed by combining the idea of segmented design with the method of variable gain. Then, an assessment of the convergence of the established fault estimation methodology is conducted, and the configurations of observer gain matrices and iterative learning gain matrices are duly accomplished. Finally, simulation results are showcased to demonstrate the superiority and feasibility of the developed fault estimation approach.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38700965</pmid><doi>10.1109/TNNLS.2024.3394570</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3081-3726</orcidid><orcidid>https://orcid.org/0000-0003-2789-9530</orcidid><orcidid>https://orcid.org/0000-0002-8600-9668</orcidid><orcidid>https://orcid.org/0000-0002-0572-5938</orcidid><orcidid>https://orcid.org/0000-0001-7373-8979</orcidid><orcidid>https://orcid.org/0000-0002-8637-8682</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-05, Vol.PP, p.1-15 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_3050937235 |
source | IEEE Electronic Library (IEL) |
subjects | Control systems Delay effects Distributed fault estimation (DFE) Estimation fault estimation law Iterative methods Nonlinear systems Observers segmented iterative learning scheme (SILS) switched interconnected nonlinear systems (SINSs) Switches |
title | A Segmented Iterative Learning Scheme-Based Distributed Fault Estimation for Switched Interconnected Nonlinear Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Segmented%20Iterative%20Learning%20Scheme-Based%20Distributed%20Fault%20Estimation%20for%20Switched%20Interconnected%20Nonlinear%20Systems&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Xu,%20Shuiqing&rft.date=2024-05-03&rft.volume=PP&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2024.3394570&rft_dat=%3Cproquest_RIE%3E3050937235%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050937235&rft_id=info:pmid/38700965&rft_ieee_id=10517989&rfr_iscdi=true |