A Segmented Iterative Learning Scheme-Based Distributed Fault Estimation for Switched Interconnected Nonlinear Systems

In this article, a distributed fault estimation (DFE) approach for switched interconnected nonlinear systems (SINSs) with time delays and external disturbances is proposed using a novel segmented iterative learning scheme (SILS). First, through the utilization of interrelated information among subsy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-05, Vol.PP, p.1-15
Hauptverfasser: Xu, Shuiqing, Wang, Lejing, Dai, Haosong, Wang, Hai, Chen, Hongtian, Chai, Yi, Zheng, Wei Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a distributed fault estimation (DFE) approach for switched interconnected nonlinear systems (SINSs) with time delays and external disturbances is proposed using a novel segmented iterative learning scheme (SILS). First, through the utilization of interrelated information among subsystems, a distributed iterative learning observer is developed to enhance the accuracy of fault estimation results, which can realize the fault estimation of all subsystems under time delays and external disturbances. Simultaneously, to facilitate rapid fault information tracking and significantly reduce sensitivity to interference, a new SILS-based fault estimation law is constructed by combining the idea of segmented design with the method of variable gain. Then, an assessment of the convergence of the established fault estimation methodology is conducted, and the configurations of observer gain matrices and iterative learning gain matrices are duly accomplished. Finally, simulation results are showcased to demonstrate the superiority and feasibility of the developed fault estimation approach.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2024.3394570