Inhalation of Hydrogen-rich Gas before Acute Exercise Alleviates Exercise Fatigue: A Randomized Crossover Study
Hydrogen, as an antioxidant, may have the potential to mitigate fatigue and improve selected oxidative stress markers induced by strenuous exercise. This study focused on a previously unexplored approach involving pre-exercise inhalation of hydrogen-rich gas (HRG). Twenty-four healthy adult men firs...
Gespeichert in:
Veröffentlicht in: | International journal of sports medicine 2024-12, Vol.45 (13), p.1014-1022 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrogen, as an antioxidant, may have the potential to mitigate fatigue and improve selected oxidative stress markers induced by strenuous exercise. This study focused on a previously unexplored approach involving pre-exercise inhalation of hydrogen-rich gas (HRG). Twenty-four healthy adult men first completed pre-laboratories to determine maximum cycling power (W
) and maximum cycling time (T
). Then they were subjected to ride T
at 80% W
and 60-70 rpm on cycle ergometers after inhaled HRG or placebo gas (air) for 60-minute in a double-blind, counterbalanced, randomized, and crossover design. The cycling frequency in the fatigue modeling process and the rating of perceived exertion (RPE) at the beginning and end of the ride were recorded. Before gas inhalation and after fatigue modeling, visual analog scale (VAS) for fatigue and counter-movement jump (CMJ) were tested, and blood samples were obtained. The results showed that compared to a placebo, HRG inhalation induced significant improvement in VAS, RPE, the cycling frequency during the last 30 seconds in the fatigue modeling process, the ability to inhibit hydroxyl radicals, and serum lactate after exercise (p |
---|---|
ISSN: | 0172-4622 1439-3964 1439-3964 |
DOI: | 10.1055/a-2318-1880 |