Accelerated Activity-Based Sensing by Fluorogenic Reporter Engineering Enables to Rapidly Determine Unstable Analyte

Accurate detection of labile analytes through activity based fluorogenic sensing is meaningful but remains a challenge because of nonrapid reaction kinetic. Herein, we present a signaling reporter engineering strategy to accelerate azoreduction reaction by positively charged fluorophore promoted uns...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2024-05, Vol.96 (19), p.7723-7729
Hauptverfasser: Li, Jingjing, Yu, Xizi, Shu, Dunji, Liu, Huihong, Gu, Maoxin, Zhang, Kai, Mao, Guojiang, Yang, Sheng, Yang, Ronghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate detection of labile analytes through activity based fluorogenic sensing is meaningful but remains a challenge because of nonrapid reaction kinetic. Herein, we present a signaling reporter engineering strategy to accelerate azoreduction reaction by positively charged fluorophore promoted unstable anion recognition for rapidly sensing sodium dithionite (Na2S2O4), a kind of widespread used but harmful inorganic reducing agent. Its quick decomposition often impedes application reliability of traditional fluorogenic probes in real samples because of their slow responses. In this work, four azo-based probes with different charged fluorophores (positive, zwitterionic, neutral, and negative) were synthesized and compared. Among of them, with sequestration effect of positively charged anthocyanin fluorophore for dithionite anion via electrostatic attraction, the cationic probe Azo-Pos displayed ultrafast fluorogenic response (∼2 s) with the fastest response kinetic (k pos ′ = 0.373 s–1) that is better than other charged ones (k zwi ′ = 0.031 s–1, k neu ′ = 0.013 s–1, k neg ′ = 0.003 s–1). Azo-Pos was demonstrated to be capable to directly detect labile Na2S2O4 in food samples and visualize the presence of Na2S2O4 in living systems in a timely fashion. This new probe has potential as a robust tool to fluorescently monitor excessive food additives and biological invasion of harmful Na2S2O4. Moreover, our proposed accelerating strategy would be versatile to develop more activity-based sensing probes for quickly detecting other unstable analytes of interest.
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/acs.analchem.4c00945