Ion detection in a DNA nanopore FET device

An ion detection device that combines a DNA-origami nanopore and a field-effect transistor (FET) was designed and modeled to determine sensitivity of the nanodevice to the local cellular environment. Such devices could be integrated into a live cell, creating an abiotic-biotic interface integrated w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2024-08, Vol.35 (32), p.325202
Hauptverfasser: Livernois, William, Cao, Purunc (Simon), Saha, Soumyadeep, Ding, Quanchen, Gopinath, Ashwin, Anantram, M P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An ion detection device that combines a DNA-origami nanopore and a field-effect transistor (FET) was designed and modeled to determine sensitivity of the nanodevice to the local cellular environment. Such devices could be integrated into a live cell, creating an abiotic-biotic interface integrated with semiconductor electronics. A continuum model is used to describe the behavior of ions in an electrolyte solution. The drift-diffusion equations are employed to model the ion distribution, taking into account the electric fields and concentration gradients. This was matched to the results from electric double layer theory to verify applicability of the model to a bio-sensing environment. The FET device combined with the nanopore is shown to have high sensitivity to ion concentration and nanopore geometry, with the electrical double layer behavior governing the device characteristics. A logarithmic relationship was found between ion concentration and a single FET current, generating up to 200 nA of current difference with a small applied bias.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/ad460b