Relevance of extracellular electron uptake mechanisms for electromethanogenesis applications
Electromethanogenesis has emerged as a biological branch of Power-to-X technologies that implements methanogenic microorganisms, as an alternative to chemical Power-to-X, to convert electrical power from renewable sources, and CO2 into methane. Unlike biomethanation processes where CO2 is converted...
Gespeichert in:
Veröffentlicht in: | Biotechnology advances 2024-07, Vol.73, p.108369, Article 108369 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electromethanogenesis has emerged as a biological branch of Power-to-X technologies that implements methanogenic microorganisms, as an alternative to chemical Power-to-X, to convert electrical power from renewable sources, and CO2 into methane. Unlike biomethanation processes where CO2 is converted via exogenously added hydrogen, electromethanogenesis occurs in a bioelectrochemical set-up that combines electrodes and microorganisms. Thereby, mixed, or pure methanogenic cultures catalyze the reduction of CO2 to methane via reducing equivalents supplied by a cathode. Recent advances in electromethanogenesis have been driven by interdisciplinary research at the intersection of microbiology, electrochemistry, and engineering. Integrating the knowledge acquired from these areas is essential to address the specific challenges presented by this relatively young biotechnology, which include electron transfer limitations, low energy and product efficiencies, and reactor design to enable upscaling. This review approaches electromethanogenesis from a multidisciplinary perspective, putting emphasis on the extracellular electron uptake mechanisms that methanogens use to obtain energy from cathodes, since understanding these mechanisms is key to optimize the electrochemical conditions for the development of these systems. This work summarizes the direct and indirect extracellular electron uptake mechanisms that have been elucidated to date in methanogens, along with the ones that remain unsolved. As the study of microbial corrosion, a similar bioelectrochemical process with Fe0 as electron source, has contributed to elucidate different mechanisms on how methanogens use solid electron donors, insights from both fields, biocorrosion and electromethanogenesis, are combined. Based on the repertoire of mechanisms and their potential to convert CO2 to methane, we conclude that for future applications, electromethanogenesis should focus on the indirect mechanism with H2 as intermediary. By summarizing and linking the general aspects and challenges of this process, we hope that this review serves as a guide for researchers working on electromethanogenesis in different areas of expertise to overcome the current limitations and continue with the optimization of this promising interdisciplinary technology.
•Electromethanogenesis is a promising technology being optimized at the lab scale.•Interdisciplinary work is required to overcome the system limitations for upscaling.•New mecha |
---|---|
ISSN: | 0734-9750 1873-1899 1873-1899 |
DOI: | 10.1016/j.biotechadv.2024.108369 |