Association Between Muscle Growth and Transcription of a Mutant MSTN Gene in Olive Flounder (Paralichthys olivaceus)

Myostatin (MSTN, also known as growth differentiation factor-8 (GDF-8)), a member of the transforming growth factor β (TGF-β) superfamily, functions as a negative regulator of skeletal muscle development and growth. However, it is also expressed in a wide range of tissues in fish and thus may have m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine biotechnology (New York, N.Y.) N.Y.), 2024-06, Vol.26 (3), p.599-608
Hauptverfasser: Kim, Ju-Won, Kim, Julan, Cho, Ja Young, Shin, Younhee, Son, Hyojung, Sathiyamoorthy, Subramaniyam, Kim, Bo-Seong, Kim, Young-Ok, Kang, Byeong-chul, Kong, Hee Jeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Myostatin (MSTN, also known as growth differentiation factor-8 (GDF-8)), a member of the transforming growth factor β (TGF-β) superfamily, functions as a negative regulator of skeletal muscle development and growth. However, it is also expressed in a wide range of tissues in fish and thus may have more diverse roles in this group than in mammals. In this study, we assessed the genome-wide transcriptional expression pattern associated with the CRISPR/Cas9-mutated MSTN gene in the olive flounder ( Paralichthys olivaceus ) in association with changes in cell proliferation and transportation processes. There were no differences in the hepatosomatic index, and the growth of male and female fish increased in the F1 progeny of the MSTN mutants. Furthermore, the histopathological analysis showed that myostatin editing resulted in a 41.24% increase in back muscle growth and 46.92% increase in belly muscle growth in male flounder compared with normal flounder, and a 16.01% increase in back muscle growth and 14.26% increase in belly muscle growth in female flounder compared with normal flounder. This study demonstrates that editing of the myostatin gene enhances muscle growth in olive flounder, with a notably more pronounced effect observed in males. Consequently, myostatin-edited male flounder could represent a valuable asset for the flounder aquaculture industry.
ISSN:1436-2228
1436-2236
1436-2236
DOI:10.1007/s10126-024-10322-y