Cd-content and temperature dependences of hyperfine fields in CdxFe3-xO4
Cd-content and temperature dependences of hyperfine fields in CdxFe3-xO4 (0 ≤ x ≤ 0.5) were investigated by means of time-differential perturbed angular correlation spectroscopy with the 111Cd(←111In) probe. It was found that Cd2+ ions selectively occupy the tetrahedral A site in the spinel structur...
Gespeichert in:
Veröffentlicht in: | Applied radiation and isotopes 2024-07, Vol.209, p.111320-111320, Article 111320 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cd-content and temperature dependences of hyperfine fields in CdxFe3-xO4 (0 ≤ x ≤ 0.5) were investigated by means of time-differential perturbed angular correlation spectroscopy with the 111Cd(←111In) probe. It was found that Cd2+ ions selectively occupy the tetrahedral A site in the spinel structure in all the range of the present Cd content x. The magnetic transition temperature TC becomes lower with increasing x due to the interference of the long-range ordering of Fe spins as a result of expansion of the lattice constants by Cd doping. The measurement of room-temperature hyperfine fields at different x shows that the supertransferred magnetic hyperfine field (SMHF) at the probe decreases as x increases in the range of 0 ≤ x ≤ 0.5. Isothermal measurements at 15 K revealed a contrastive phenomenon for the Cd contents up to x = 0.4: the SMHF becomes great with increasing x; however, this increasing trend of the SMHF turns to reduction at x = 0.46. These observations can be explained based on the effect of Cd doping on the antiferromagnetic coupling between Fe ions in the A and B sites.
•correlation spectroscopy.•Cd-content dependence of hyperfine fields in CdxFe3-xO4.•Cd-content dependence of the isothermal hyperfine fields showing different trends at different temperatures. |
---|---|
ISSN: | 0969-8043 1872-9800 |
DOI: | 10.1016/j.apradiso.2024.111320 |