Evaluation of cytocompatibility and cell proliferation of electrospun chitosan/polyvinyl alcohol/montmorillonite clay scaffold with l929 cell lines in skin regeneration activity and in silico molecular docking studies

The present investigation describes the development of a novel Chitosan/Polyvinyl Alcohol/Montmorillonite Clay (CS/PVA/MMT) scaffold by adopting an electrospinning method, and their biocompatibility was evaluated in vitro with L929 fibroblast cell line to ascertain its use in wound healing applicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-05, Vol.268 (Pt 2), p.131762-131762, Article 131762
Hauptverfasser: Sangeetha, K., Albeshr, Mohammed F., Shoba, K., Lavanya, G., Prasad, P. Supriya, Sudha, P.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present investigation describes the development of a novel Chitosan/Polyvinyl Alcohol/Montmorillonite Clay (CS/PVA/MMT) scaffold by adopting an electrospinning method, and their biocompatibility was evaluated in vitro with L929 fibroblast cell line to ascertain its use in wound healing applications. The fabricated scaffold was characterized using analytical techniques. FT-IR measurement exhibited the existence of relevant functional groups and XRD implies scaffolds' amorphous nature. The scaffold's morphology and pore diameter were assessed using TEM and SEM. The pore diameter of the as-prepared scaffold was approximately 125 nm. The antimicrobial assay of the scaffold was evaluated against selected pathogens which demonstrated higher antimicrobial efficacy. The scavenging activity tested using the DPPH assay showed remarkable scavenging capability. The wound healing properties were tested through the Cytotoxicity assay conducted on the L929 assay which proved the scaffold to be a suitable material for cell proliferation. Also, a Molecular docking investigation was carried out for CS/PVA/MMT ligand using human neutrophil elastase (HNE) 1H1B protein as a receptor in the CB-Dock server. Studies conducted in silico revealed strong interaction and high binding energy ratings of CS/PVA/MMT ligand with key residues of human neutrophil elastase (HNE) 1H1B proteins that help in tissue regeneration activity. [Display omitted] •CS/PVA/MMT hybrid scaffolds were developed using electrospinning.•The prepared scaffold had pores that were of the right size for the proliferation of cells.•Scaffolds had remarkable antimicrobial and antioxidant properties.•They were nontoxic to L929 cells and enabled cell attachment cell proliferation inside the scaffold•The in silico studies also support the use of the scaffold for skin regeneration
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2024.131762