Effect of biodegradable polymers upon grazing activity of the sea urchin Paracentrotus lividus (Lmk) revealed by morphological, histological and molecular analyses
In the last years biodegradable polymers (BPs) were largely used as real opportunity to solve plastic pollution. Otherwise, their wide use in commercial products, such as packaging sector, is causing a new pollution alarm, mainly because few data reported about their behaviour in the environment and...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2024-06, Vol.929, p.172586-172586, Article 172586 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the last years biodegradable polymers (BPs) were largely used as real opportunity to solve plastic pollution. Otherwise, their wide use in commercial products, such as packaging sector, is causing a new pollution alarm, mainly because few data reported about their behaviour in the environment and toxicity on marine organisms. Our previous results showed that embryos of the sea urchin Paracentrotus lividus (Lmk) exposed to poly(ε-caprolactone) (PCL), poly(3-hydroxybutyrate) (PHB) and poly(lactic acid) (PLA) showed delay of their development and morphological malformations, also affecting at the molecular levels the expression of several genes involved in different functional responses. In the present work for the first time, we tested the effects of five microplastics (MPs) obtained from BPs such as PBS, poly(butylene succinate), PBSA, poly(butylene succinate-co-butylene adipate), PCL, PHB and PLA, upon grazing activity of the sea urchin revealed by: i. histological analysis seeing at the gonadic tissues; ii. morphological analysis of the deriving embryos; iii. molecular analyses on these embryos to detect variations of the gene expression of eighty-seven genes involved in stress response, detoxification, skeletogenesis, differentiation and development. All these results will help in understanding how MP accumulated inside various organs in the adult sea urchins, and more in general in marine invertebrates, could represent risks for the marine environment.
[Display omitted]
•Sea urchins adults mortality was observed only in the case of PCL and PHB treatment•PBSA and PCL affected gonads and gametogenesis including atretic and amorphous forms•Exposure to BPs induced down-regulation of numerous genes•MPs represent a real risk for humans since the large consumption of sea urchin gonads |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2024.172586 |