Design and synthesis of new quinazolinone derivatives: investigation of antimicrobial and biofilm inhibition effects

New quinazolin-4-ones 9-32 were synthesized in an attempt to overcome the life-threatening antibiotic resistance phenomenon. The antimicrobial screening revealed that compounds 9, 15, 16, 18, 19, 20 and 29 are the most broad spectrum antimicrobial agents in this study with safe profile on human cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular diversity 2024-04
Hauptverfasser: Hassan, Rasha Mohamed, Yehia, Heba, El-Behairy, Mohammed F, El-Azzouny, Aida Abdel-Sattar, Aboul-Enein, Mohamed Nabil
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New quinazolin-4-ones 9-32 were synthesized in an attempt to overcome the life-threatening antibiotic resistance phenomenon. The antimicrobial screening revealed that compounds 9, 15, 16, 18, 19, 20 and 29 are the most broad spectrum antimicrobial agents in this study with safe profile on human cell lines. Additionally, compounds 19 and 20 inhibited biofilm formation in Pseudomonas aeruginosa, which is regulated by quorum sensing system, at sub-minimum inhibitory concentrations (sub-MICs) with IC values 3.55 and 6.86 µM, respectively. By assessing other pseudomonal virulence factors suppression, it was found that compound 20 decreased cell surface hydrophobicity compromising bacterial cells adhesion, while both compounds 19 and 20 curtailed the exopolysaccharide production which constitutes the major component of the matrix binding biofilm components together. Also, at sub-MICs Pseudomonas cells twitching motility was impeded by compounds 19 and 20, a trait which augments the cells pathogenicity and invasion potential. Molecular docking study was performed to further evaluate the binding mode of candidates 19 and 20 as inhibitors of P. aeruginosa quorum sensing transcriptional regulator PqsR. The achieved results demonstrate that both compounds bear promising potential for discovering new anti-biofilm and quorum quenching agents against Pseudomonas aeruginosa without triggering resistance mechanisms as the normal bacterial life cycle is not disturbed.
ISSN:1381-1991
1573-501X
DOI:10.1007/s11030-024-10830-y