Rutin Attenuates Gentamycin-induced Hair Cell Injury in the Zebrafish Lateral Line via Suppressing STAT1

Aminoglycoside antibiotics, including gentamicin (GM), induce delayed ototoxic effects such as hearing loss after prolonged use, which results from the death of hair cells. However, the mechanisms underlying the ototoxicity of aminoglycosides warrant further investigation, and there are currently no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2024-11, Vol.61 (11), p.9548-9561
Hauptverfasser: Yang, Huiming, Zong, Tao, Liu, Jing, Wang, Dengxu, Gong, Ke, Yin, Haiyan, Zhang, Weiwei, Xu, Tong, Yang, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aminoglycoside antibiotics, including gentamicin (GM), induce delayed ototoxic effects such as hearing loss after prolonged use, which results from the death of hair cells. However, the mechanisms underlying the ototoxicity of aminoglycosides warrant further investigation, and there are currently no effective drugs in the clinical setting. Herein, the therapeutic effect of the flavonoid compound rutin against the ototoxic effects of GM in zebrafish hair cells was investigated. Animals incubated with rutin (100–400 µmol/L) were protected against the pernicious effects of GM (200 µmol/L). We found that rutin improves hearing behavior in zebrafish, and rutin was effective in reducing the number of Tunel-positive cells in the neuromasts of the zebrafish lateral line and promoting cell proliferation after exposure to GM. Subsequently, rutin exerted a protective effect against GM-induced cell death in HEI-OC1 cells and could limit the production of cytosolic reactive oxygen species (ROS) and diminish the percentage of apoptotic cells. Additionally, the results of the proteomic analysis revealed that rutin could effectively inhibit the expression of necroptosis and apoptosis related genes. Meanwhile, molecular docking analysis revealed a high linking activity between the molecular docking of rutin and STAT1 proteins. The protection of zebrafish hair cells or HEI-OC1 cells from GM-induced ototoxicity by rutin was attenuated by the introduction of STAT1 activator. Finally, we demonstrated that rutin significantly improves the bacteriostatic effect of GM by in vitro experiments, emphasising its clinical application value. In summary, these results collectively unravel a novel therapeutic role for rutin as an otoprotective drug against the adverse effects of GM.
ISSN:0893-7648
1559-1182
1559-1182
DOI:10.1007/s12035-024-04179-4