Nonvolatile Phase-Only Transmissive Spatial Light Modulator with Electrical Addressability of Individual Pixels

Active metasurfaces with tunable subwavelength-scale nanoscatterers are promising platforms for high-performance spatial light modulators (SLMs). Among the tuning methods, phase-change materials (PCMs) are attractive because of their nonvolatile, threshold-driven, and drastic optical modulation, ren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-04, Vol.18 (17), p.11245-11256
Hauptverfasser: Fang, Zhuoran, Chen, Rui, Fröch, Johannes E., Tanguy, Quentin A. A., Khan, Asir Intisar, Wu, Xiangjin, Tara, Virat, Manna, Arnab, Sharp, David, Munley, Christopher, Miller, Forrest, Zhao, Yang, Geiger, Sarah, Böhringer, Karl F., Reynolds, Matthew S., Pop, Eric, Majumdar, Arka
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Active metasurfaces with tunable subwavelength-scale nanoscatterers are promising platforms for high-performance spatial light modulators (SLMs). Among the tuning methods, phase-change materials (PCMs) are attractive because of their nonvolatile, threshold-driven, and drastic optical modulation, rendering zero-static power, crosstalk immunity, and compact pixels. However, current electrically controlled PCM-based metasurfaces are limited to global amplitude modulation, which is insufficient for SLMs. Here, an individual-pixel addressable, transmissive metasurface is experimentally demonstrated using the low-loss PCM Sb2Se3 and doped silicon nanowire heaters. The nanowires simultaneously form a diatomic metasurface, supporting a high-quality-factor (∼406) quasi-bound-state-in-the-continuum mode. A global phase-only modulation of ∼0.25π (∼0.2π) in simulation (experiment) is achieved, showing ten times enhancement. A 2π phase shift is further obtained using a guided-mode resonance with enhanced light-Sb2Se3 interaction. Finally, individual-pixel addressability and SLM functionality are demonstrated through deterministic multilevel switching (ten levels) and tunable far-field beam shaping. Our work presents zero-static power transmissive phase-only SLMs, enabled by electrically controlled low-loss PCMs and individual meta-molecule addressable metasurfaces.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.4c00340