The biomechanical influence of transtibial Bone-Anchored limbs during walking

Individuals with unilateral transtibial amputation (TTA) using socket prostheses demonstrate asymmetric joint biomechanics during walking, which increases the risk of secondary comorbidities (e.g., low back pain (LBP), osteoarthritis (OA)). Bone-anchored limbs are an alternative to socket prostheses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2024-05, Vol.168, p.112098-112098, Article 112098
Hauptverfasser: Vinson, Amanda L., Vandenberg, Nicholas W., Awad, Mohamed E., Christiansen, Cory L., Stoneback, Jason W., M. M. Gaffney, Brecca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Individuals with unilateral transtibial amputation (TTA) using socket prostheses demonstrate asymmetric joint biomechanics during walking, which increases the risk of secondary comorbidities (e.g., low back pain (LBP), osteoarthritis (OA)). Bone-anchored limbs are an alternative to socket prostheses, yet it remains unknown how they influence multi-joint loading. Our objective was to determine the influence of bone-anchored limb use on multi-joint biomechanics during walking. Motion capture data (kinematics, ground reaction forces) were collected during overground walking from ten participants with unilateral TTA prior to (using socket prostheses) and 12-months after bone-anchored limb implantation. Within this year, each participant completed a rehabilitation protocol that guided progression of loading based on patient pain response and optimized biomechanics. Musculoskeletal models were developed at each testing timepoint (baseline or 12-months after implantation) and used to calculate joint kinematics, internal joint moments, and joint reaction forces (JRFs). Analyses were performed during three stance periods on each limb. The between-limb normalized symmetry index (NSI) was calculated for joint moments and JRF impulses. Discrete (range of motion (ROM), impulse NSI) dependent variables were compared before and after implantation using paired t-tests with Bonferroni-Holm corrections while continuous (ensemble averages of kinematics, moments, JRFs) were compared using statistical parametric mapping (p 
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2024.112098