Chiral Pyclen-Based Heptadentate Chelates as Highly Stable MRI Contrast Agents

In recent years, pyclen-based complexes have attracted a great deal of interest as magnetic resonance imaging (MRI) contrast agents (CAs) and luminescent materials, as well as radiopharmaceuticals. Remarkably, gadopiclenol, a Gd­(III) bishydrated complex featuring a pyclen-based heptadentate ligand,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2024-05, Vol.63 (18), p.8462-8475
Hauptverfasser: Jian, Yong, Mo, Gengshen, Xu, Weiyuan, Liu, Yao, Zhang, Zhichao, Ding, Yinghui, Gao, Ruonan, Xu, Jiao, Zhu, Jiang, Shu, Kun, Yan, Zhihan, Carniato, Fabio, Platas-Iglesias, Carlos, Ye, Fangfu, Botta, Mauro, Dai, Lixiong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, pyclen-based complexes have attracted a great deal of interest as magnetic resonance imaging (MRI) contrast agents (CAs) and luminescent materials, as well as radiopharmaceuticals. Remarkably, gadopiclenol, a Gd­(III) bishydrated complex featuring a pyclen-based heptadentate ligand, received approval as a novel contrast agent for clinical MRI application in 2022. To maximize stability and efficiency, two novel chiral pyclen-based chelators and their complexes were developed in this study. Gd-X-PCTA-2 showed significant enhancements in both thermodynamic and kinetic stabilities compared to those of the achiral parent derivative Gd-PCTA. 1H NMRD profiles reveal that both chiral gadolinium complexes (Gd-X-PCTA-1 and Gd-X-PCTA-2) have a higher relaxivity than Gd-PCTA, while variable-temperature 17O NMR studies show that the two inner-sphere water molecules have distinct residence times τM a and τM b. Furthermore, in vivo imaging demonstrates that Gd-X-PCTA-2 enhances the signal in the heart and kidneys of the mice, and the chiral Gd complexes exhibit the ability to distinguish between tumors and normal tissues in a 4T1 mouse model more efficiently than that of the clinical agent gadobutrol. Biodistribution studies show that Gd-PCTA and Gd-X-PCTA-2 are primarily cleared by a renal pathway, with 24 h residues of Gd-X-PCTA-2 in the liver and kidney being lower than those of Gd-PCTA.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.4c01028