Diatom-derived mesoporous silica nanoparticles loaded with fucoidan for enhanced chemo-photodynamic therapy
Combination therapy merges chemical photodynamic therapy (CPDT) to improve cancer treatment. It synergizes chemotherapy with photodynamic therapy (PDT), using photosensitizers to produce reactive oxygen species (ROS) when exposed to light, effectively killing drug-resistant cancer cells. It is not a...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2023-12, Vol.253, p.127078-127078, Article 127078 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Combination therapy merges chemical photodynamic therapy (CPDT) to improve cancer treatment. It synergizes chemotherapy with photodynamic therapy (PDT), using photosensitizers to produce reactive oxygen species (ROS) when exposed to light, effectively killing drug-resistant cancer cells. It is not affected by drug resistance, making it an attractive option for combination with chemotherapy.
In this study, the focus was on the design of a combination therapy of chemotherapy and PDT. They synthesized diatomaceous earth mesoporous silica nanoparticles (dMSN) containing lanthanide metal ions in a PDT composition. These nanoparticles can generate ROS under near-infrared light irradiation and have MRI and fluorescence imaging capabilities, confirming their phototherapeutic effect on HCT116 cancer cells at a 200 μg/mL concentration.
Fucoidan, derived from brown algae, was used as the chemotherapy component. The fucoidan extracted from Sargassum oligocystum in Pingtung Haikou showed the highest anticancer activity, with cell viability of 57.4 % at 200 μg/mL on HCT116 cancer cells. For combination therapy, fucoidan was loaded into nanoparticles (dMSN-EuGd@fucoidan). Cell viability experiments revealed that at 200 μg/mL, the cell survival rate of dMSN-EuGd@Fucoidan on HCT116 cancer cells was 47.7 %. Combination therapy demonstrated superior anticancer efficacy compared to PDT or chemotherapy alone, successfully synthesizing nanoparticles for combined chemotherapy and photodynamic therapy.
•Biological silicon-derived mesoporous silica nanoparticles (dMSN-EuGd@Fucoidan) were synthesized for photodynamic therapy. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.127078 |