Structural and dynamical changes of the Streptococcus gordonii metalloregulatory ScaR protein induced by Mn2+ ion binding

Divalent metal ions are essential micronutrients for many intercellular reactions. Maintaining their homeostasis is necessary for the survival of bacteria. In Streptococcus gordonii, one of the primary colonizers of the tooth surface, the cellular concentration of manganese ions (Mn2+) is regulated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-12, Vol.253 (Pt 8), p.127572, Article 127572
Hauptverfasser: Radman, Katarina, Matošević, Zoe Jelić, Žilić, Dijana, Crnolatac, Ivo, Bregović, Nikola, Kveder, Marina, Piantanida, Ivo, Fernandes, Pedro A., Ašler, Ivana Leščić, Bertoša, Branimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Divalent metal ions are essential micronutrients for many intercellular reactions. Maintaining their homeostasis is necessary for the survival of bacteria. In Streptococcus gordonii, one of the primary colonizers of the tooth surface, the cellular concentration of manganese ions (Mn2+) is regulated by the manganese-sensing transcriptional factor ScaR which controls the expression of proteins involved in manganese homeostasis. To resolve the molecular mechanism through which the binding of Mn2+ ions increases the binding affinity of ScaR to DNA, a variety of computational (QM and MD) and experimental (ITC, DSC, EMSA, EPR and CD) methods were applied. The computational results showed that Mn2+ binding induces a conformational change in ScaR that primarily affects the position of the DNA binding domains and, consequently, the DNA binding affinity of the protein. In addition, experimental results revealed a 1:4 binding stoichiometry between ScaR dimer and Mn2+ ions, while the computational results showed that the binding of Mn2+ ions in the primary binding sites is sufficient to induce the observed conformational change of ScaR.
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2023.127572