Nucleic acid and nanomaterial-assisted signal-amplified strategies in fluorescent analysis of circulating tumor cells and small extracellular vesicles
As two main types of liquid biopsy markers, both circulating tumor cells (CTCs) and small extracellular vesicles (sEVs) play important roles in the diagnosis and prognosis of cancers. CTCs are malignant cells that detach from the original tumor tissue and enter the circulation of body fluids. sEVs...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2023-07, Vol.415 (18), p.3769-3787 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: |
As two main types of liquid biopsy markers, both circulating tumor cells (CTCs) and small extracellular vesicles (sEVs) play important roles in the diagnosis and prognosis of cancers. CTCs are malignant cells that detach from the original tumor tissue and enter the circulation of body fluids. sEVs are nanoscale vesicles secreted by normal cells or pathological cells. However, CTCs and sEVs in body fluids are scarce, leading to great difficulties in the accurate analysis of related diseases. For the sensitive detection of CTCs and sEVs in body fluids, various types of nucleic acid and nanomaterial-assisted signal amplification strategies have been developed. In this review, we summarize the recent advances in fluorescent detection of CTCs and sEVs in liquid biopsy based on nucleic acid and nanomaterial-assisted signal amplification strategies. We also discuss their advantages, challenges, and future prospects.
Graphical abstract |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-022-04509-2 |