Metals and microorganisms in a Maar lake sediment core indicating the anthropogenic impact over last 800 years

A closed Maar lake, receiving mostly atmospheric deposition, offers a unique setting for investigating the impact of human activities on the environment. In this study, we aimed to investigate the historical record of metals in core sediments of Maar Lake in Huguangyan (HGY), Southeast China, and el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-02, Vol.911, p.168392-168392, Article 168392
Hauptverfasser: Yan, Jia, Guo, Xingpan, He, Maoyong, Niu, Zuoshun, Xu, Miao, Peng, Bo, Yang, Yi, Jin, Zhangdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A closed Maar lake, receiving mostly atmospheric deposition, offers a unique setting for investigating the impact of human activities on the environment. In this study, we aimed to investigate the historical record of metals in core sediments of Maar Lake in Huguangyan (HGY), Southeast China, and elucidate the possible microbial responses to anthropogenic metal stress. Five stages were divided according to the historical record of metals and corresponding distribution of microbial community, among which Pb and Sn showed a peak value around 1760 CE, indicating the ancient mining and smelting activities. Since the 1980s, a substantial enrichment of metals such as Zn, As, Mo, Cd, Sn, Sb, and Pb was observed, due to the rapid industrial growth in China. In terms of microorganisms, Chloroflexi phylum, particularly dominated by Anaerolineales, showed significant correlations with Pb and Sn, and could potentially serve as indicator species for mining and smelting-related contamination. Desulfarculales and Desulfobacterales were found to be more prevalent in recent period and exhibited positive correlations with anthropogenic metals. Moreover, according to the multivariate regression modeling and variance decomposition analysis, Pb and Sn could regulate Anaerolineales and further pose impact on the carbon cycle; while sulfate-reducing bacteria (SRB) could response to anthropogenic metals and influence sulfur cycle. These findings provide new insights into the interaction between metals and microbial communities over human history.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.168392