MEAI: an artificial intelligence platform for predicting distant and lymph node metastases directly from primary breast cancer
Purpose Breast cancer patients typically have decent prognoses, with a 5-year survival rate of more than 90%, but when the disease metastases to lymph node or distant, the prognosis drastically declines. Therefore, it is essential for future treatment and patient survival to quickly and accurately i...
Gespeichert in:
Veröffentlicht in: | Journal of cancer research and clinical oncology 2023-09, Vol.149 (11), p.9229-9241 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
Breast cancer patients typically have decent prognoses, with a 5-year survival rate of more than 90%, but when the disease metastases to lymph node or distant, the prognosis drastically declines. Therefore, it is essential for future treatment and patient survival to quickly and accurately identify tumor metastasis in patients. An artificial intelligence system was developed to recognize lymph node and distant tumor metastases on whole-slide images (WSIs) of primary breast cancer.
Methods
In this study, a total of 832 WSIs from 520 patients without tumor metastases and 312 patients with breast cancer metastases (including lymph node, bone, lung, liver, and other) were gathered. Based on the WSIs were randomly divided into the training and testing cohorts, a brand-new artificial intelligence system called MEAI was built to identify lymph node and distant metastases in primary breast cancer.
Results
The final AI system attained an area under the receiver operating characteristic curve of 0.934 in a test set of 187 patients. In addition, the potential for AI system to increase the precision, consistency, and effectiveness of tumor metastasis detection in patients with breast cancer was highlighted by the AI’s achievement of an AUROC higher than the average of six board-certified pathologists (AUROC 0.811) in a retrospective pathologist evaluation.
Conclusion
The proposed MEAI system can provide a non-invasive approach to assess the metastatic probability of patients with primary breast cancer. |
---|---|
ISSN: | 0171-5216 1432-1335 1432-1335 |
DOI: | 10.1007/s00432-023-04787-y |