4D interpretation of time-lapse electrical resistivity monitoring data to identify preferential flow path in a landfill, South Korea

Monitoring the leakage of leachate from a landfill is critical in preventing possible contamination in the surrounding area. Time-lapse (TL) electrical resistivity tomography (ERT) has been performed along eleven survey lines at four different time points in a landfill in Korea. The TL data sets wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2023-05, Vol.195 (5), p.625-625, Article 625
Hauptverfasser: Song, Seo Young, Kim, Bitnarae, Jeong, Juyeon, Park, Samgyu, Nam, Myung Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monitoring the leakage of leachate from a landfill is critical in preventing possible contamination in the surrounding area. Time-lapse (TL) electrical resistivity tomography (ERT) has been performed along eleven survey lines at four different time points in a landfill in Korea. The TL data sets were interpreted using an in-house 4D inversion algorithm. Changes in 4D inversion results were analyzed in order to interpret a leachate-contaminant region. Since the rainy season started during obtaining TL ERT data sets, the effects of precipitation on TL ERT data are also analyzed. Changes in electrical resistivity (ER) showed that precipitation increases ER of contaminant zones. As hydrogeochemical data offer contamination information in some areas where boreholes are located, these are helpful to interpret and compare with ERT inversion results to evaluate the extent of the contaminated plume. We also classified soil textures from particle size analysis on soil samples and analyzed electrical conductivity (EC) and dissolved oxygen (DO) using groundwater samples obtained from observation wells in the survey site. The information on soil structure as well as the results of 4D inversion provided insight into the location of a preferential flow path.
ISSN:0167-6369
1573-2959
DOI:10.1007/s10661-023-11149-1