Biorenewable Polymer-Based Light-Absorbing Porous Hydrogel for Efficient Solar Steam Desalination

An efficient interfacial heating system composed of a light-absorbing material and a hydrophilic porous support is developed through eco-friendly and energy-effective fabrication processes. Lignin nanoparticles (NPs) and cellulose nanofibers (CNFs) are harnessed as biorenewable light absorbers and h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-06, Vol.15 (25), p.30692-30706
Hauptverfasser: Jeon, Junmo, Lee, So Hyun, Lee, Sang-Ryong, Seo, Tae Hoon, Kim, Young-Kwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An efficient interfacial heating system composed of a light-absorbing material and a hydrophilic porous support is developed through eco-friendly and energy-effective fabrication processes. Lignin nanoparticles (NPs) and cellulose nanofibers (CNFs) are harnessed as biorenewable light absorbers and hydrophilic supports, respectively. Lignin NPs are prepared using a solvent exchange process of the fractionated lignin with organic solvents to improve its π–π stacking and light-absorbing property for efficient photothermal conversion. Then, the lignin NPs are mixed with CNFs and lyophilized to obtain a light-absorbing porous hydrogel (LAPH), and the resulting LAPHs are covalently cross-linked and hybridized with Au NPs through a seed-mediated growth to further enhance their mechanical stability, hydrophilicity, and photothermal conversion properties. The resulting LAPHs exhibit an outstanding and prolonged performance as a solar steam generator such as high salt and pH tolerance, evaporation rate (3.17 kg m–2 h–1), and solar steam generation efficiency (83.4%) under 1 sun irradiation.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.3c01880