Near-Infrared Long Afterglow in Fe3+-Activated Mg2SnO4 for Self-Sustainable Night Vision
The advent of near-infrared (NIR) afterglow in Cr3+-doped materials has stimulated considerable interest in technological applications owing to the sustainable emission of light with good penetrability. However, the development of Cr3+-free NIR afterglow phosphors with high efficiency, low cost, and...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-03, Vol.15 (10), p.13186-13194 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The advent of near-infrared (NIR) afterglow in Cr3+-doped materials has stimulated considerable interest in technological applications owing to the sustainable emission of light with good penetrability. However, the development of Cr3+-free NIR afterglow phosphors with high efficiency, low cost, and precise spectral tunability is still an open question. Herein, we report a novel Fe3+-activated NIR long afterglow phosphor composed of Mg2SnO4 (MSO), in which Fe3+ ions occupy the tetrahedral [Mg–O4] and octahedral [Sn/Mg–O6] sites, giving rise to a broadband NIR emission spanning 720–789 nm. On account of energy-level alignment, the electrons released from the traps show a preferential return to the excited energy level of Fe3+ in tetrahedral sites through tunneling, leading to a single-peak NIR afterglow centered at 789 nm with a full-width at half-maximum (fwhm) of 140 nm. The high-efficiency NIR afterglow, showing a record persistent time lasting over 31 h among Fe3+-based phosphors, is demonstrated as a self-sustainable light source for night vision applications. This work not only provides a novel Fe3+-doped high-efficiency NIR afterglow phosphor for technological applications but also establishes practical guidance for rational tuning of afterglow emissions. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.3c00673 |