Plant-pollinator Interaction Data: A case study of the WorldFAIR project
Biodiversity is a data-intensive science and relies on data from a large number of disciplines in order to build up a coherent picture of the extent and trajectory of life on earth (Bowker 2000). The ability to integrate such data from different disciplines, geographic regions and scales is crucial...
Gespeichert in:
Veröffentlicht in: | Biodiversity Information Science and Standards 2022-09, Vol.6 (1), p.643 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biodiversity is a data-intensive science and relies on data from a large number of disciplines in order to build up a coherent picture of the extent and trajectory of life on earth (Bowker 2000). The ability to integrate such data from different disciplines, geographic regions and scales is crucial for making better decisions towards sustainable development. As the Biodiversity Information Standards (TDWG) community tackles standards development and adoption beyond its initial emphases on taxonomy and species distributions, expanding its impact and engaging a wider audience becomes increasingly important.
Biological interactions data (e.g., predator-prey, host-parasite, plant-pollinator) have been a topic of interest within TDWG for many years and a Biological Interaction Data Interest Group (IG) was established in 2016 to address that issue. The IG has been working on the complexity of representing interactions data and surveying how Darwin Core (DwC, Wieczorek 2012) is being used to represent them (Salim 2022).
The importance of cross-disciplinary science and data inspired the recently funded WorldFAIR project—Global cooperation on FAIR data policy and practice—coordinated by the Committee on Data of the International Science Council (CODATA), with the Research Data Alliance (RDA) as a major partner. WorldFAIR will work with a set of case studies to advance implementation of the FAIR data principles (Fig. 1). The FAIR data principles promote good practices in data management, by making data and metadata Findable, Accessible, Interoperable, and Reusable (Wilkinson 2016). Interoperability will be a particular focus to facilitate cross-disciplinary research. A set of recommendations and a framework for FAIR assessment in a set of disciplines will be developed (Molloy 2022).
One of WorldFAIR's case studies is related to plant-pollinator interactions data. Its starting point is the model and schema proposed by Salim (2022) based on the DwC standard, which adheres to the diversifying GBIF data model strategy and on the Plant-Pollinator vocabulary described by Salim (2021). The case study on plant-pollinator interactions originated in the TDWG Biological Interaction Data Interest Group (IG) and within the RDA Improving Global Agricultural Data (IGAD) Community of Practice. IGAD is a forum for sharing experiences and providing visibility to research and work in food and agricultural data and has become a space for networking and blending ideas related to data ma |
---|---|
ISSN: | 2535-0897 2535-0897 |
DOI: | 10.3897/biss.6.94310 |