Designing of covalent organic framework/2D g-C3N4 heterostructure using a simple method for enhanced photocatalytic hydrogen production
[Display omitted] Designing heterostructure photocatalysts is a promising approach for developing highly efficient photocatalysts for hydrogen energy production. In this work, we synthesized a series of a covalent organic framework (COF)/g-C3N4 (CN) heterojunction photocatalysts, denoted as x % COF/...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2024-01, Vol.653, p.1650-1661 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Designing heterostructure photocatalysts is a promising approach for developing highly efficient photocatalysts for hydrogen energy production. In this work, we synthesized a series of a covalent organic framework (COF)/g-C3N4 (CN) heterojunction photocatalysts, denoted as x % COF/CN (in which x indicates the weight % of COF and x = 5, 10, 20, 30, 40, 50, 90, 95, 100), for hydrogen production. The COF, which is a key component of the photocatalyst, was prepared by assembling benzothiadiazole (BT) and pyrene (Py) derivatives as building blocks. Integrating COF rods into the two-dimensional (2D) layered g-C3N4 structure significantly improved photocatalytic H2 production. The hybrid system (30 % COF/CN) displayed an outstanding hydrogen evolution rate (HER) of 27540 ± 805 μmol g−1h−1, outperforming most known COFs and g-C3N4-based photocatalysts, besides exhibiting stable photocatalytic performance. Moreover, the apparent quantum yield (AQY) was 15.5 ± 0.8 % at 420 nm. Experimental techniques and density functional theory (DFT) calculations demonstrated that the 30 % COF/CN heterostructure has broad visible-light absorption, adequate band energy levels, and the best chemical reactivity descriptors compared to the individual components, resulting in effective carrier separation and excellent performance. Our findings offer a valuable strategy for developing highly efficient and stable heterojunction photocatalysts for visible-light‐driven H2 evolution. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2023.10.010 |