Designing of covalent organic framework/2D g-C3N4 heterostructure using a simple method for enhanced photocatalytic hydrogen production

[Display omitted] Designing heterostructure photocatalysts is a promising approach for developing highly efficient photocatalysts for hydrogen energy production. In this work, we synthesized a series of a covalent organic framework (COF)/g-C3N4 (CN) heterojunction photocatalysts, denoted as x % COF/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-01, Vol.653, p.1650-1661
Hauptverfasser: Hassan, Ahmed E., Elewa, Ahmed M., Hussien, Mai S.A., EL-Mahdy, Ahmed F.M., Mekhemer, Islam M.A., Yahia, Ibrahim S., Mohamed, Tarek A., Chou, Ho-Hsiu, Wen, Zhenhai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Designing heterostructure photocatalysts is a promising approach for developing highly efficient photocatalysts for hydrogen energy production. In this work, we synthesized a series of a covalent organic framework (COF)/g-C3N4 (CN) heterojunction photocatalysts, denoted as x % COF/CN (in which x indicates the weight % of COF and x  = 5, 10, 20, 30, 40, 50, 90, 95, 100), for hydrogen production. The COF, which is a key component of the photocatalyst, was prepared by assembling benzothiadiazole (BT) and pyrene (Py) derivatives as building blocks. Integrating COF rods into the two-dimensional (2D) layered g-C3N4 structure significantly improved photocatalytic H2 production. The hybrid system (30 % COF/CN) displayed an outstanding hydrogen evolution rate (HER) of 27540 ± 805 μmol g−1h−1, outperforming most known COFs and g-C3N4-based photocatalysts, besides exhibiting stable photocatalytic performance. Moreover, the apparent quantum yield (AQY) was 15.5 ± 0.8 % at 420 nm. Experimental techniques and density functional theory (DFT) calculations demonstrated that the 30 % COF/CN heterostructure has broad visible-light absorption, adequate band energy levels, and the best chemical reactivity descriptors compared to the individual components, resulting in effective carrier separation and excellent performance. Our findings offer a valuable strategy for developing highly efficient and stable heterojunction photocatalysts for visible-light‐driven H2 evolution.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2023.10.010