Nitrogen and water addition alters species diversity and interspecific relationship in a desert grassland
Water and nitrogen (N) often affect plant species diversity and interspecific relationship among plant populations in global terrestrial ecosystems. However, the effects of water and N addition on plant diversity and interspecific relationship remain poorly understood. In the study, we designed a th...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2024-01, Vol.908, p.168386-168386, Article 168386 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Water and nitrogen (N) often affect plant species diversity and interspecific relationship among plant populations in global terrestrial ecosystems. However, the effects of water and N addition on plant diversity and interspecific relationship remain poorly understood. In the study, we designed a three-year field experiment in a desert grassland to assess the effect of increased water (natural +50 %) and N addition (10 g·N·m-2·a-1) on plant diversity and interspecific relationship. Our results showed that the alpha diversity was significantly changed under increased water (W), N addition (N), and water plus N addition (WN). The species richness was decreased significantly on year scales (10 %-27 %), whereas the Pielou index first increased and then decreased over three years and was significantly affected by the interaction between increased water and N addition. The total and pairwise beta diversity were significantly increased by N addition, the community was mainly caused by the turnover component after N addition, especially in 2019 and 2020 (16.6 % and 9 %, respectively). There were significant negative associations among overall populations and dominant populations under N addition, especially Stipa bungeana and Gypsophila davurica, Gypsophila davurica and Oxytropis acemose, Artemisia dalai-lamae, and Haplophyllum dauricum. Our findings suggested that plant community structure and composition changes may be due to competition for resources among dominant populations and the turnover component under increased water and N addition, which should be considered in ecosystem management. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.168386 |