Incorporation of Magnesium Ions into an Aptamer-Functionalized ECM Bioactive Scaffold for Articular Cartilage Regeneration
The regeneration and reconstruction of articular cartilage (AC) after a defect are often difficult. The key to the treatment of AC defects lies in regeneration of the defect site and regulation of the inflammatory response. In this investigation, a bioactive multifunctional scaffold was formulated u...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-05, Vol.15 (19), p.22944-22958 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The regeneration and reconstruction of articular cartilage (AC) after a defect are often difficult. The key to the treatment of AC defects lies in regeneration of the defect site and regulation of the inflammatory response. In this investigation, a bioactive multifunctional scaffold was formulated using the aptamer Apt19S as a mediator for mesenchymal stem cell (MSC)-specific recruitment and the enhancement of cellular chondrogenic and inflammatory regulation through the incorporation of Mg2+. Apt19S, which can recruit MSCs in vitro and in vivo, was chemically conjugated to a decellularized cartilage extracellular matrix (ECM)-lysed scaffold. The results from in vitro experiments using the resulting scaffold demonstrated that the inclusion of Mg2+ could stimulate not only the chondrogenic differentiation of synovial MSCs but also the increased polarization of macrophages toward the M2 phenotype. Additionally, Mg2+ inhibited NLRP3 inflammasome activation, thereby decreasing chondrocyte pyroptosis. Subsequently, Mg2+ was incorporated into the bioactive multifunctional scaffold, and the resulting scaffold promoted cartilage regeneration in vivo. In conclusion, this study confirms that the combination of Mg2+ and aptamer-functionalized ECM scaffolds is a promising strategy for AC regeneration based on in situ tissue engineering and early inflammatory regulation. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.3c02317 |