High-Performance Uncooled Mid-Infrared Detector Based on a Polycrystalline PbSe/CdSe Heterojunction
Developing high-performance, uncooled mid-wavelength infrared (MWIR) detectors is a challenging task due to the inherent physical properties of materials and manufacturing technologies. In this study, we designed and manufactured an uncooled polycrystalline PbSe/CdSe heterojunction photovoltaic (PV)...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-05, Vol.15 (20), p.24541-24548 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developing high-performance, uncooled mid-wavelength infrared (MWIR) detectors is a challenging task due to the inherent physical properties of materials and manufacturing technologies. In this study, we designed and manufactured an uncooled polycrystalline PbSe/CdSe heterojunction photovoltaic (PV) detector through vapor physical deposition. The resulting 10 μm × 10 μm device exhibited a peak detectivity of 7.5 × 109 and 3 × 1010 cm·Hz1/2·W–1 at 298 and 220 K, respectively, under blackbody radiation. These values are comparable to those of typical PbSe photoconductive detectors fabricated through standard chemical bath deposition. Additionally, the sensitization-free process used to create these PbSe/CdSe PV detectors allows for high replicability and yield, making them promising candidates for low-cost, high-performance, uncooled MWIR focal plane array imaging in commercial applications. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.3c01538 |