In-situ construction of TiO2 polymorphic junction nanoarrays without cocatalyst for boosting photocatalytic hydrogen generation

[Display omitted] There are significant challenges in developing technologies for high-yield photocatalytic hydrogen production reactions. Current photocatalytic materials face three key problems: low utilization of light, rapid recombination of photogenerated electron-hole pairs, and a limited numb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-01, Vol.653, p.1630-1641
Hauptverfasser: Shen, Qianqian, Jin, Baobao, Li, Jinlong, Sun, Zhe, Kang, Wenxiang, Li, Huimin, Jia, Husheng, Li, Qi, Xue, Jinbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1641
container_issue
container_start_page 1630
container_title Journal of colloid and interface science
container_volume 653
creator Shen, Qianqian
Jin, Baobao
Li, Jinlong
Sun, Zhe
Kang, Wenxiang
Li, Huimin
Jia, Husheng
Li, Qi
Xue, Jinbo
description [Display omitted] There are significant challenges in developing technologies for high-yield photocatalytic hydrogen production reactions. Current photocatalytic materials face three key problems: low utilization of light, rapid recombination of photogenerated electron-hole pairs, and a limited number of active sites during photocatalytic reactions. As a result, these materials only improve one or two of the three steps involved in photocatalytic hydrogen production reactions. Consequently, achieving simultaneous multifunctional synergy to enhance the efficiency of all three processes is difficult. Here, we report an in situ dissolution-recrystallisation approach to design and fabricate a three-dimensional TiO2 rutile/anatase (AE-TiO2) array photocatalytic material for photocatalytic hydrolysis applications. It is shown that the unique 3D nanoarray structure and in situ fabrication of the AE-TiO2 homojunction with synergistic effects among the components lead to an increase in light harvesting efficiency, charge transport separation efficiency and surface active sites, which remarkably improve the photocatalytic hydrolysis performance. The prepared AE-TiO2 homojunction materials realizes a maximal photoactivity of 4 μmol cm−2·h−1, which is 39 times larger than that of pure TiO2 rutile nanorods.
doi_str_mv 10.1016/j.jcis.2023.09.198
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040356938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979723019124</els_id><sourcerecordid>2875380411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-d6f1ad79052ea6f16396fcc45b75ba17e5f50fb95160b425abe12b62ae2ebccf3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVoodu0f6AnHXuxM5JW8gp6KaEfgUAu6VnI8igr45UcSW7xqX-9Xjbn9DDMwPsBw0PIJwYtA6ZuxnZ0obQcuGhBt0wfrsiOgZZNx0C8ITsAzhrd6e4deV_KCMCYlHpH_t7FpoS6UJdiqXlxNaRIk6eP4YHTOU3rKeX5GBwdl3gRo43J5mzXQv-EekxL3cLOVjutpVKfMu1TKjXEJzofU32R6lZxXIecnjDSbTDbc9sH8tbbqeDHl31Nfn3_9nj7s7l_-HF3-_W-cUKp2gzKMzt0GiRHu91KaOWd28u-k71lHUovwfdaMgX9nkvbI-O94hY59s55cU0-X3rnnJ4XLNWcQnE4TTZiWooRsAchlRaH_1r5oZPiAHvGNiu_WF1OpWT0Zs7hZPNqGJgzGDOaMxhzBmNAmw3MFvpyCeH27--A2RQXMDocQkZXzZDCa_F_G0ubcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875380411</pqid></control><display><type>article</type><title>In-situ construction of TiO2 polymorphic junction nanoarrays without cocatalyst for boosting photocatalytic hydrogen generation</title><source>Elsevier ScienceDirect Journals</source><creator>Shen, Qianqian ; Jin, Baobao ; Li, Jinlong ; Sun, Zhe ; Kang, Wenxiang ; Li, Huimin ; Jia, Husheng ; Li, Qi ; Xue, Jinbo</creator><creatorcontrib>Shen, Qianqian ; Jin, Baobao ; Li, Jinlong ; Sun, Zhe ; Kang, Wenxiang ; Li, Huimin ; Jia, Husheng ; Li, Qi ; Xue, Jinbo</creatorcontrib><description>[Display omitted] There are significant challenges in developing technologies for high-yield photocatalytic hydrogen production reactions. Current photocatalytic materials face three key problems: low utilization of light, rapid recombination of photogenerated electron-hole pairs, and a limited number of active sites during photocatalytic reactions. As a result, these materials only improve one or two of the three steps involved in photocatalytic hydrogen production reactions. Consequently, achieving simultaneous multifunctional synergy to enhance the efficiency of all three processes is difficult. Here, we report an in situ dissolution-recrystallisation approach to design and fabricate a three-dimensional TiO2 rutile/anatase (AE-TiO2) array photocatalytic material for photocatalytic hydrolysis applications. It is shown that the unique 3D nanoarray structure and in situ fabrication of the AE-TiO2 homojunction with synergistic effects among the components lead to an increase in light harvesting efficiency, charge transport separation efficiency and surface active sites, which remarkably improve the photocatalytic hydrolysis performance. The prepared AE-TiO2 homojunction materials realizes a maximal photoactivity of 4 μmol cm−2·h−1, which is 39 times larger than that of pure TiO2 rutile nanorods.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2023.09.198</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Charge transport ; Homophase junction ; hydrogen production ; hydrolysis ; nanorods ; Phase transitions ; photocatalysis ; photocatalytic H2 generation ; TiO2 nanorods ; titanium dioxide</subject><ispartof>Journal of colloid and interface science, 2024-01, Vol.653, p.1630-1641</ispartof><rights>2023 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-d6f1ad79052ea6f16396fcc45b75ba17e5f50fb95160b425abe12b62ae2ebccf3</citedby><cites>FETCH-LOGICAL-c366t-d6f1ad79052ea6f16396fcc45b75ba17e5f50fb95160b425abe12b62ae2ebccf3</cites><orcidid>0000-0003-0022-4621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979723019124$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shen, Qianqian</creatorcontrib><creatorcontrib>Jin, Baobao</creatorcontrib><creatorcontrib>Li, Jinlong</creatorcontrib><creatorcontrib>Sun, Zhe</creatorcontrib><creatorcontrib>Kang, Wenxiang</creatorcontrib><creatorcontrib>Li, Huimin</creatorcontrib><creatorcontrib>Jia, Husheng</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Xue, Jinbo</creatorcontrib><title>In-situ construction of TiO2 polymorphic junction nanoarrays without cocatalyst for boosting photocatalytic hydrogen generation</title><title>Journal of colloid and interface science</title><description>[Display omitted] There are significant challenges in developing technologies for high-yield photocatalytic hydrogen production reactions. Current photocatalytic materials face three key problems: low utilization of light, rapid recombination of photogenerated electron-hole pairs, and a limited number of active sites during photocatalytic reactions. As a result, these materials only improve one or two of the three steps involved in photocatalytic hydrogen production reactions. Consequently, achieving simultaneous multifunctional synergy to enhance the efficiency of all three processes is difficult. Here, we report an in situ dissolution-recrystallisation approach to design and fabricate a three-dimensional TiO2 rutile/anatase (AE-TiO2) array photocatalytic material for photocatalytic hydrolysis applications. It is shown that the unique 3D nanoarray structure and in situ fabrication of the AE-TiO2 homojunction with synergistic effects among the components lead to an increase in light harvesting efficiency, charge transport separation efficiency and surface active sites, which remarkably improve the photocatalytic hydrolysis performance. The prepared AE-TiO2 homojunction materials realizes a maximal photoactivity of 4 μmol cm−2·h−1, which is 39 times larger than that of pure TiO2 rutile nanorods.</description><subject>Charge transport</subject><subject>Homophase junction</subject><subject>hydrogen production</subject><subject>hydrolysis</subject><subject>nanorods</subject><subject>Phase transitions</subject><subject>photocatalysis</subject><subject>photocatalytic H2 generation</subject><subject>TiO2 nanorods</subject><subject>titanium dioxide</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1r3DAQhkVoodu0f6AnHXuxM5JW8gp6KaEfgUAu6VnI8igr45UcSW7xqX-9Xjbn9DDMwPsBw0PIJwYtA6ZuxnZ0obQcuGhBt0wfrsiOgZZNx0C8ITsAzhrd6e4deV_KCMCYlHpH_t7FpoS6UJdiqXlxNaRIk6eP4YHTOU3rKeX5GBwdl3gRo43J5mzXQv-EekxL3cLOVjutpVKfMu1TKjXEJzofU32R6lZxXIecnjDSbTDbc9sH8tbbqeDHl31Nfn3_9nj7s7l_-HF3-_W-cUKp2gzKMzt0GiRHu91KaOWd28u-k71lHUovwfdaMgX9nkvbI-O94hY59s55cU0-X3rnnJ4XLNWcQnE4TTZiWooRsAchlRaH_1r5oZPiAHvGNiu_WF1OpWT0Zs7hZPNqGJgzGDOaMxhzBmNAmw3MFvpyCeH27--A2RQXMDocQkZXzZDCa_F_G0ubcQ</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Shen, Qianqian</creator><creator>Jin, Baobao</creator><creator>Li, Jinlong</creator><creator>Sun, Zhe</creator><creator>Kang, Wenxiang</creator><creator>Li, Huimin</creator><creator>Jia, Husheng</creator><creator>Li, Qi</creator><creator>Xue, Jinbo</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-0022-4621</orcidid></search><sort><creationdate>202401</creationdate><title>In-situ construction of TiO2 polymorphic junction nanoarrays without cocatalyst for boosting photocatalytic hydrogen generation</title><author>Shen, Qianqian ; Jin, Baobao ; Li, Jinlong ; Sun, Zhe ; Kang, Wenxiang ; Li, Huimin ; Jia, Husheng ; Li, Qi ; Xue, Jinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-d6f1ad79052ea6f16396fcc45b75ba17e5f50fb95160b425abe12b62ae2ebccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge transport</topic><topic>Homophase junction</topic><topic>hydrogen production</topic><topic>hydrolysis</topic><topic>nanorods</topic><topic>Phase transitions</topic><topic>photocatalysis</topic><topic>photocatalytic H2 generation</topic><topic>TiO2 nanorods</topic><topic>titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Qianqian</creatorcontrib><creatorcontrib>Jin, Baobao</creatorcontrib><creatorcontrib>Li, Jinlong</creatorcontrib><creatorcontrib>Sun, Zhe</creatorcontrib><creatorcontrib>Kang, Wenxiang</creatorcontrib><creatorcontrib>Li, Huimin</creatorcontrib><creatorcontrib>Jia, Husheng</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Xue, Jinbo</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Qianqian</au><au>Jin, Baobao</au><au>Li, Jinlong</au><au>Sun, Zhe</au><au>Kang, Wenxiang</au><au>Li, Huimin</au><au>Jia, Husheng</au><au>Li, Qi</au><au>Xue, Jinbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ construction of TiO2 polymorphic junction nanoarrays without cocatalyst for boosting photocatalytic hydrogen generation</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2024-01</date><risdate>2024</risdate><volume>653</volume><spage>1630</spage><epage>1641</epage><pages>1630-1641</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] There are significant challenges in developing technologies for high-yield photocatalytic hydrogen production reactions. Current photocatalytic materials face three key problems: low utilization of light, rapid recombination of photogenerated electron-hole pairs, and a limited number of active sites during photocatalytic reactions. As a result, these materials only improve one or two of the three steps involved in photocatalytic hydrogen production reactions. Consequently, achieving simultaneous multifunctional synergy to enhance the efficiency of all three processes is difficult. Here, we report an in situ dissolution-recrystallisation approach to design and fabricate a three-dimensional TiO2 rutile/anatase (AE-TiO2) array photocatalytic material for photocatalytic hydrolysis applications. It is shown that the unique 3D nanoarray structure and in situ fabrication of the AE-TiO2 homojunction with synergistic effects among the components lead to an increase in light harvesting efficiency, charge transport separation efficiency and surface active sites, which remarkably improve the photocatalytic hydrolysis performance. The prepared AE-TiO2 homojunction materials realizes a maximal photoactivity of 4 μmol cm−2·h−1, which is 39 times larger than that of pure TiO2 rutile nanorods.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2023.09.198</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0022-4621</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2024-01, Vol.653, p.1630-1641
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_3040356938
source Elsevier ScienceDirect Journals
subjects Charge transport
Homophase junction
hydrogen production
hydrolysis
nanorods
Phase transitions
photocatalysis
photocatalytic H2 generation
TiO2 nanorods
titanium dioxide
title In-situ construction of TiO2 polymorphic junction nanoarrays without cocatalyst for boosting photocatalytic hydrogen generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20construction%20of%20TiO2%20polymorphic%20junction%20nanoarrays%20without%20cocatalyst%20for%20boosting%20photocatalytic%20hydrogen%20generation&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Shen,%20Qianqian&rft.date=2024-01&rft.volume=653&rft.spage=1630&rft.epage=1641&rft.pages=1630-1641&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2023.09.198&rft_dat=%3Cproquest_cross%3E2875380411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875380411&rft_id=info:pmid/&rft_els_id=S0021979723019124&rfr_iscdi=true