In-situ construction of TiO2 polymorphic junction nanoarrays without cocatalyst for boosting photocatalytic hydrogen generation
[Display omitted] There are significant challenges in developing technologies for high-yield photocatalytic hydrogen production reactions. Current photocatalytic materials face three key problems: low utilization of light, rapid recombination of photogenerated electron-hole pairs, and a limited numb...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2024-01, Vol.653, p.1630-1641 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1641 |
---|---|
container_issue | |
container_start_page | 1630 |
container_title | Journal of colloid and interface science |
container_volume | 653 |
creator | Shen, Qianqian Jin, Baobao Li, Jinlong Sun, Zhe Kang, Wenxiang Li, Huimin Jia, Husheng Li, Qi Xue, Jinbo |
description | [Display omitted]
There are significant challenges in developing technologies for high-yield photocatalytic hydrogen production reactions. Current photocatalytic materials face three key problems: low utilization of light, rapid recombination of photogenerated electron-hole pairs, and a limited number of active sites during photocatalytic reactions. As a result, these materials only improve one or two of the three steps involved in photocatalytic hydrogen production reactions. Consequently, achieving simultaneous multifunctional synergy to enhance the efficiency of all three processes is difficult. Here, we report an in situ dissolution-recrystallisation approach to design and fabricate a three-dimensional TiO2 rutile/anatase (AE-TiO2) array photocatalytic material for photocatalytic hydrolysis applications. It is shown that the unique 3D nanoarray structure and in situ fabrication of the AE-TiO2 homojunction with synergistic effects among the components lead to an increase in light harvesting efficiency, charge transport separation efficiency and surface active sites, which remarkably improve the photocatalytic hydrolysis performance. The prepared AE-TiO2 homojunction materials realizes a maximal photoactivity of 4 μmol cm−2·h−1, which is 39 times larger than that of pure TiO2 rutile nanorods. |
doi_str_mv | 10.1016/j.jcis.2023.09.198 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3040356938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979723019124</els_id><sourcerecordid>2875380411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-d6f1ad79052ea6f16396fcc45b75ba17e5f50fb95160b425abe12b62ae2ebccf3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVoodu0f6AnHXuxM5JW8gp6KaEfgUAu6VnI8igr45UcSW7xqX-9Xjbn9DDMwPsBw0PIJwYtA6ZuxnZ0obQcuGhBt0wfrsiOgZZNx0C8ITsAzhrd6e4deV_KCMCYlHpH_t7FpoS6UJdiqXlxNaRIk6eP4YHTOU3rKeX5GBwdl3gRo43J5mzXQv-EekxL3cLOVjutpVKfMu1TKjXEJzofU32R6lZxXIecnjDSbTDbc9sH8tbbqeDHl31Nfn3_9nj7s7l_-HF3-_W-cUKp2gzKMzt0GiRHu91KaOWd28u-k71lHUovwfdaMgX9nkvbI-O94hY59s55cU0-X3rnnJ4XLNWcQnE4TTZiWooRsAchlRaH_1r5oZPiAHvGNiu_WF1OpWT0Zs7hZPNqGJgzGDOaMxhzBmNAmw3MFvpyCeH27--A2RQXMDocQkZXzZDCa_F_G0ubcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875380411</pqid></control><display><type>article</type><title>In-situ construction of TiO2 polymorphic junction nanoarrays without cocatalyst for boosting photocatalytic hydrogen generation</title><source>Elsevier ScienceDirect Journals</source><creator>Shen, Qianqian ; Jin, Baobao ; Li, Jinlong ; Sun, Zhe ; Kang, Wenxiang ; Li, Huimin ; Jia, Husheng ; Li, Qi ; Xue, Jinbo</creator><creatorcontrib>Shen, Qianqian ; Jin, Baobao ; Li, Jinlong ; Sun, Zhe ; Kang, Wenxiang ; Li, Huimin ; Jia, Husheng ; Li, Qi ; Xue, Jinbo</creatorcontrib><description>[Display omitted]
There are significant challenges in developing technologies for high-yield photocatalytic hydrogen production reactions. Current photocatalytic materials face three key problems: low utilization of light, rapid recombination of photogenerated electron-hole pairs, and a limited number of active sites during photocatalytic reactions. As a result, these materials only improve one or two of the three steps involved in photocatalytic hydrogen production reactions. Consequently, achieving simultaneous multifunctional synergy to enhance the efficiency of all three processes is difficult. Here, we report an in situ dissolution-recrystallisation approach to design and fabricate a three-dimensional TiO2 rutile/anatase (AE-TiO2) array photocatalytic material for photocatalytic hydrolysis applications. It is shown that the unique 3D nanoarray structure and in situ fabrication of the AE-TiO2 homojunction with synergistic effects among the components lead to an increase in light harvesting efficiency, charge transport separation efficiency and surface active sites, which remarkably improve the photocatalytic hydrolysis performance. The prepared AE-TiO2 homojunction materials realizes a maximal photoactivity of 4 μmol cm−2·h−1, which is 39 times larger than that of pure TiO2 rutile nanorods.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2023.09.198</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Charge transport ; Homophase junction ; hydrogen production ; hydrolysis ; nanorods ; Phase transitions ; photocatalysis ; photocatalytic H2 generation ; TiO2 nanorods ; titanium dioxide</subject><ispartof>Journal of colloid and interface science, 2024-01, Vol.653, p.1630-1641</ispartof><rights>2023 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-d6f1ad79052ea6f16396fcc45b75ba17e5f50fb95160b425abe12b62ae2ebccf3</citedby><cites>FETCH-LOGICAL-c366t-d6f1ad79052ea6f16396fcc45b75ba17e5f50fb95160b425abe12b62ae2ebccf3</cites><orcidid>0000-0003-0022-4621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979723019124$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shen, Qianqian</creatorcontrib><creatorcontrib>Jin, Baobao</creatorcontrib><creatorcontrib>Li, Jinlong</creatorcontrib><creatorcontrib>Sun, Zhe</creatorcontrib><creatorcontrib>Kang, Wenxiang</creatorcontrib><creatorcontrib>Li, Huimin</creatorcontrib><creatorcontrib>Jia, Husheng</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Xue, Jinbo</creatorcontrib><title>In-situ construction of TiO2 polymorphic junction nanoarrays without cocatalyst for boosting photocatalytic hydrogen generation</title><title>Journal of colloid and interface science</title><description>[Display omitted]
There are significant challenges in developing technologies for high-yield photocatalytic hydrogen production reactions. Current photocatalytic materials face three key problems: low utilization of light, rapid recombination of photogenerated electron-hole pairs, and a limited number of active sites during photocatalytic reactions. As a result, these materials only improve one or two of the three steps involved in photocatalytic hydrogen production reactions. Consequently, achieving simultaneous multifunctional synergy to enhance the efficiency of all three processes is difficult. Here, we report an in situ dissolution-recrystallisation approach to design and fabricate a three-dimensional TiO2 rutile/anatase (AE-TiO2) array photocatalytic material for photocatalytic hydrolysis applications. It is shown that the unique 3D nanoarray structure and in situ fabrication of the AE-TiO2 homojunction with synergistic effects among the components lead to an increase in light harvesting efficiency, charge transport separation efficiency and surface active sites, which remarkably improve the photocatalytic hydrolysis performance. The prepared AE-TiO2 homojunction materials realizes a maximal photoactivity of 4 μmol cm−2·h−1, which is 39 times larger than that of pure TiO2 rutile nanorods.</description><subject>Charge transport</subject><subject>Homophase junction</subject><subject>hydrogen production</subject><subject>hydrolysis</subject><subject>nanorods</subject><subject>Phase transitions</subject><subject>photocatalysis</subject><subject>photocatalytic H2 generation</subject><subject>TiO2 nanorods</subject><subject>titanium dioxide</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1r3DAQhkVoodu0f6AnHXuxM5JW8gp6KaEfgUAu6VnI8igr45UcSW7xqX-9Xjbn9DDMwPsBw0PIJwYtA6ZuxnZ0obQcuGhBt0wfrsiOgZZNx0C8ITsAzhrd6e4deV_KCMCYlHpH_t7FpoS6UJdiqXlxNaRIk6eP4YHTOU3rKeX5GBwdl3gRo43J5mzXQv-EekxL3cLOVjutpVKfMu1TKjXEJzofU32R6lZxXIecnjDSbTDbc9sH8tbbqeDHl31Nfn3_9nj7s7l_-HF3-_W-cUKp2gzKMzt0GiRHu91KaOWd28u-k71lHUovwfdaMgX9nkvbI-O94hY59s55cU0-X3rnnJ4XLNWcQnE4TTZiWooRsAchlRaH_1r5oZPiAHvGNiu_WF1OpWT0Zs7hZPNqGJgzGDOaMxhzBmNAmw3MFvpyCeH27--A2RQXMDocQkZXzZDCa_F_G0ubcQ</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Shen, Qianqian</creator><creator>Jin, Baobao</creator><creator>Li, Jinlong</creator><creator>Sun, Zhe</creator><creator>Kang, Wenxiang</creator><creator>Li, Huimin</creator><creator>Jia, Husheng</creator><creator>Li, Qi</creator><creator>Xue, Jinbo</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-0022-4621</orcidid></search><sort><creationdate>202401</creationdate><title>In-situ construction of TiO2 polymorphic junction nanoarrays without cocatalyst for boosting photocatalytic hydrogen generation</title><author>Shen, Qianqian ; Jin, Baobao ; Li, Jinlong ; Sun, Zhe ; Kang, Wenxiang ; Li, Huimin ; Jia, Husheng ; Li, Qi ; Xue, Jinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-d6f1ad79052ea6f16396fcc45b75ba17e5f50fb95160b425abe12b62ae2ebccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge transport</topic><topic>Homophase junction</topic><topic>hydrogen production</topic><topic>hydrolysis</topic><topic>nanorods</topic><topic>Phase transitions</topic><topic>photocatalysis</topic><topic>photocatalytic H2 generation</topic><topic>TiO2 nanorods</topic><topic>titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Qianqian</creatorcontrib><creatorcontrib>Jin, Baobao</creatorcontrib><creatorcontrib>Li, Jinlong</creatorcontrib><creatorcontrib>Sun, Zhe</creatorcontrib><creatorcontrib>Kang, Wenxiang</creatorcontrib><creatorcontrib>Li, Huimin</creatorcontrib><creatorcontrib>Jia, Husheng</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Xue, Jinbo</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Qianqian</au><au>Jin, Baobao</au><au>Li, Jinlong</au><au>Sun, Zhe</au><au>Kang, Wenxiang</au><au>Li, Huimin</au><au>Jia, Husheng</au><au>Li, Qi</au><au>Xue, Jinbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ construction of TiO2 polymorphic junction nanoarrays without cocatalyst for boosting photocatalytic hydrogen generation</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2024-01</date><risdate>2024</risdate><volume>653</volume><spage>1630</spage><epage>1641</epage><pages>1630-1641</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
There are significant challenges in developing technologies for high-yield photocatalytic hydrogen production reactions. Current photocatalytic materials face three key problems: low utilization of light, rapid recombination of photogenerated electron-hole pairs, and a limited number of active sites during photocatalytic reactions. As a result, these materials only improve one or two of the three steps involved in photocatalytic hydrogen production reactions. Consequently, achieving simultaneous multifunctional synergy to enhance the efficiency of all three processes is difficult. Here, we report an in situ dissolution-recrystallisation approach to design and fabricate a three-dimensional TiO2 rutile/anatase (AE-TiO2) array photocatalytic material for photocatalytic hydrolysis applications. It is shown that the unique 3D nanoarray structure and in situ fabrication of the AE-TiO2 homojunction with synergistic effects among the components lead to an increase in light harvesting efficiency, charge transport separation efficiency and surface active sites, which remarkably improve the photocatalytic hydrolysis performance. The prepared AE-TiO2 homojunction materials realizes a maximal photoactivity of 4 μmol cm−2·h−1, which is 39 times larger than that of pure TiO2 rutile nanorods.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2023.09.198</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0022-4621</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2024-01, Vol.653, p.1630-1641 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_3040356938 |
source | Elsevier ScienceDirect Journals |
subjects | Charge transport Homophase junction hydrogen production hydrolysis nanorods Phase transitions photocatalysis photocatalytic H2 generation TiO2 nanorods titanium dioxide |
title | In-situ construction of TiO2 polymorphic junction nanoarrays without cocatalyst for boosting photocatalytic hydrogen generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20construction%20of%20TiO2%20polymorphic%20junction%20nanoarrays%20without%20cocatalyst%20for%20boosting%20photocatalytic%20hydrogen%20generation&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Shen,%20Qianqian&rft.date=2024-01&rft.volume=653&rft.spage=1630&rft.epage=1641&rft.pages=1630-1641&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2023.09.198&rft_dat=%3Cproquest_cross%3E2875380411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875380411&rft_id=info:pmid/&rft_els_id=S0021979723019124&rfr_iscdi=true |