In-situ construction of TiO2 polymorphic junction nanoarrays without cocatalyst for boosting photocatalytic hydrogen generation

[Display omitted] There are significant challenges in developing technologies for high-yield photocatalytic hydrogen production reactions. Current photocatalytic materials face three key problems: low utilization of light, rapid recombination of photogenerated electron-hole pairs, and a limited numb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-01, Vol.653, p.1630-1641
Hauptverfasser: Shen, Qianqian, Jin, Baobao, Li, Jinlong, Sun, Zhe, Kang, Wenxiang, Li, Huimin, Jia, Husheng, Li, Qi, Xue, Jinbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] There are significant challenges in developing technologies for high-yield photocatalytic hydrogen production reactions. Current photocatalytic materials face three key problems: low utilization of light, rapid recombination of photogenerated electron-hole pairs, and a limited number of active sites during photocatalytic reactions. As a result, these materials only improve one or two of the three steps involved in photocatalytic hydrogen production reactions. Consequently, achieving simultaneous multifunctional synergy to enhance the efficiency of all three processes is difficult. Here, we report an in situ dissolution-recrystallisation approach to design and fabricate a three-dimensional TiO2 rutile/anatase (AE-TiO2) array photocatalytic material for photocatalytic hydrolysis applications. It is shown that the unique 3D nanoarray structure and in situ fabrication of the AE-TiO2 homojunction with synergistic effects among the components lead to an increase in light harvesting efficiency, charge transport separation efficiency and surface active sites, which remarkably improve the photocatalytic hydrolysis performance. The prepared AE-TiO2 homojunction materials realizes a maximal photoactivity of 4 μmol cm−2·h−1, which is 39 times larger than that of pure TiO2 rutile nanorods.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2023.09.198