The performance of artificial intelligence large language model-linked chatbots in surgical decision-making for gastroesophageal reflux disease

Background Large language model (LLM)-linked chatbots may be an efficient source of clinical recommendations for healthcare providers and patients. This study evaluated the performance of LLM-linked chatbots in providing recommendations for the surgical management of gastroesophageal reflux disease...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surgical endoscopy 2024-05, Vol.38 (5), p.2320-2330
Hauptverfasser: Huo, Bright, Calabrese, Elisa, Sylla, Patricia, Kumar, Sunjay, Ignacio, Romeo C., Oviedo, Rodolfo, Hassan, Imran, Slater, Bethany J., Kaiser, Andreas, Walsh, Danielle S., Vosburg, Wesley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Large language model (LLM)-linked chatbots may be an efficient source of clinical recommendations for healthcare providers and patients. This study evaluated the performance of LLM-linked chatbots in providing recommendations for the surgical management of gastroesophageal reflux disease (GERD). Methods Nine patient cases were created based on key questions addressed by the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) guidelines for the surgical treatment of GERD. ChatGPT-3.5, ChatGPT-4, Copilot, Google Bard, and Perplexity AI were queried on November 16th, 2023, for recommendations regarding the surgical management of GERD. Accurate chatbot performance was defined as the number of responses aligning with SAGES guideline recommendations. Outcomes were reported with counts and percentages. Results Surgeons were given accurate recommendations for the surgical management of GERD in an adult patient for 5/7 (71.4%) KQs by ChatGPT-4, 3/7 (42.9%) KQs by Copilot, 6/7 (85.7%) KQs by Google Bard, and 3/7 (42.9%) KQs by Perplexity according to the SAGES guidelines. Patients were given accurate recommendations for 3/5 (60.0%) KQs by ChatGPT-4, 2/5 (40.0%) KQs by Copilot, 4/5 (80.0%) KQs by Google Bard, and 1/5 (20.0%) KQs by Perplexity, respectively. In a pediatric patient, surgeons were given accurate recommendations for 2/3 (66.7%) KQs by ChatGPT-4, 3/3 (100.0%) KQs by Copilot, 3/3 (100.0%) KQs by Google Bard, and 2/3 (66.7%) KQs by Perplexity. Patients were given appropriate guidance for 2/2 (100.0%) KQs by ChatGPT-4, 2/2 (100.0%) KQs by Copilot, 1/2 (50.0%) KQs by Google Bard, and 1/2 (50.0%) KQs by Perplexity. Conclusions Gastrointestinal surgeons, gastroenterologists, and patients should recognize both the promise and pitfalls of LLM’s when utilized for advice on surgical management of GERD. Additional training of LLM’s using evidence-based health information is needed.
ISSN:0930-2794
1432-2218
1432-2218
DOI:10.1007/s00464-024-10807-w