Solar-Driven Multistage Device Integrating Dropwise Condensation and Guided Water Transport for Efficient Freshwater and Salt Collection

Interfacial solar vapor generation (ISVG) is an emerging technology to alleviate the global freshwater crisis. However, high-cost, low freshwater collection rate, and salt-blockage issues significantly hinder the practical application of solar-driven desalination devices based on ISVG. Herein, with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-04, Vol.58 (17), p.7335-7345
Hauptverfasser: Tian, Yankuan, Jiang, Yifei, Zhu, Ruishu, Yang, Xin, Wu, Dequn, Wang, Xueli, Yu, Jianyong, Li, Yiju, Gao, Tingting, Li, Faxue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interfacial solar vapor generation (ISVG) is an emerging technology to alleviate the global freshwater crisis. However, high-cost, low freshwater collection rate, and salt-blockage issues significantly hinder the practical application of solar-driven desalination devices based on ISVG. Herein, with a low-cost copper plate (CP), nonwoven fabric (NWF), and insulating ethylene–vinyl acetate foam (EVA foam), a multistage device is elaborately fabricated for highly efficient simultaneous freshwater and salt collection. In the designed solar-driven device, a superhydrophobic copper plate (SH-CP) serves as the condensation layer, facilitating rapid mass and heat transfer through dropwise condensation. Moreover, the hydrophilic NWF is designed with rational hydrophobic zones and specific high-salinity solution outlets (Design-NWF) to act as the water evaporation layer and facilitate directional salt collection. As a result, the multistage evaporator with eight stages exhibits a high water collection rate of 2.25 kg m–2 h–1 under 1 sun irradiation. In addition, the desalination device based on the eight-stage evaporator obtains a water collection rate of 13.44 kg m–2 and a salt collection rate of 1.77 kg m–2 per day under natural irradiation. More importantly, it can maintain a steady production for 15 days without obvious performance decay. This bifunctional multistage device provides a feasible and efficient approach for simultaneous desalination and solute collection.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.3c10450