Liquid crystal wave plate operating close to 18 THz
Controlling the properties of mid- and far-infrared radiation can provide a means to transiently alter the properties of materials for novel applications. However, a limited number of optical elements are available to control its polarization state. Here we show that a 15-µm thick liquid crystal cel...
Gespeichert in:
Veröffentlicht in: | Optics letters 2024-04, Vol.49 (8), p.2061-2064 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Controlling the properties of mid- and far-infrared radiation can provide a means to transiently alter the properties of materials for novel applications. However, a limited number of optical elements are available to control its polarization state. Here we show that a 15-µm thick liquid crystal cell containing 8CB (4-octyl-4'-cyanobiphenyl) in the ordered, smectic A phase can be used as a phase retarder or wave plate. This was tested using the bright, short-pulsed (∼1 ps) radiation centered at 16.5 µm (18.15 THz) that is emitted by a free electron laser at high repetition rate (13 MHz). These results demonstrate a possible tool for the exploration of the mid- and far-infrared range and could be used to develop novel metamaterials or extend multidimensional spectroscopy to this portion of the electromagnetic spectrum. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.519177 |