Unlocking a new hydrogen-bonding marker: C–O bond shortening in vicinal diols revealed by rotational spectroscopy

The conformational space of cis-1,2-cyclohexanediol, a model molecule for cyclic vicinal diols, was investigated using rotational spectroscopy and density functional theory calculations. Four low energy conformers within an energy window of 5 kJ mol−1 were identified computationally. A rotational sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-04, Vol.160 (15)
Hauptverfasser: Ma, Jiarui, Insausti, Aran, Al-Jabiri, Mohamad H., Carlson, Colton D., Jäger, Wolfgang, Xu, Yunjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conformational space of cis-1,2-cyclohexanediol, a model molecule for cyclic vicinal diols, was investigated using rotational spectroscopy and density functional theory calculations. Four low energy conformers within an energy window of 5 kJ mol−1 were identified computationally. A rotational spectrum of jet-cooled cis-1,2-cyclohexanediol was recorded with a chirped pulse Fourier transform microwave spectrometer. Two sets of rotational transitions were observed and could be assigned to conformers of cis-1,2-cyclohexanediol. The non-observation of other low energy conformers was explained by conformational conversion barrier height calculations and results from experimental spectra recorded with different carrier gases. Eight isotopologues, including those with 13C and 18O, of the lowest energy conformer were observed, allowing the determination of the semi-experimental equilibrium structure, reSE. Interestingly, the structural analysis revealed that the C–O bond length of the intramolecular hydrogen-bond donor is shorter than that of the acceptor. This appears to be a general characteristic of vicinal diols and can be used as a novel hydrogen-bond marker in such compounds.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0203123