Xiaoqing: A Q&A model for glaucoma based on LLMs
Glaucoma is one of the leading cause of blindness worldwide. Individuals affected by glaucoma, including patients and their family members, frequently encounter a deficit in dependable support beyond the confines of clinical environments. Seeking advice via the internet can be a difficult task due t...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2024-05, Vol.174, p.108399, Article 108399 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glaucoma is one of the leading cause of blindness worldwide. Individuals affected by glaucoma, including patients and their family members, frequently encounter a deficit in dependable support beyond the confines of clinical environments. Seeking advice via the internet can be a difficult task due to the vast amount of disorganized and unstructured material available on these sites, nevertheless. This research explores how Large Language Models (LLMs) can be leveraged to better serve medical research and benefit glaucoma patients. We introduce Xiaoqing, a Natural Language Processing (NLP) model specifically tailored for the glaucoma field, detailing its development and deployment. To evaluate its effectiveness, we conducted two forms of experiments: comparative and experiential. In the comparative analysis, we presented 22 glaucoma-related questions in simplified Chinese to three medical NLP models (Xiaoqing LLMs, HuaTuo, Ivy GPT) and two general models (ChatGPT-3.5 and ChatGPT-4), covering a range of topics from basic glaucoma knowledge to treatment, surgery, research, management standards, and patient lifestyle. Responses were assessed for informativeness and readability. The experiential experiment involved glaucoma patients and non-patients interacting with Xiaoqing, collecting and analyzing their questions and feedback on the same criteria. The findings demonstrated that Xiaoqing notably outperformed the other models in terms of informativeness and readability, suggesting that Xiaoqing is a significant advancement in the management and treatment of glaucoma in China. We also provide a Web-based version of Xiaoqing, allowing readers to directly experience its functionality. The Web-based Xiaoqing is available at https://qa.glaucoma-assistant.com//qa.
•Xiaoqing, an NLP model for glaucoma, enhances responses to related queries over others.•Xiaoqing shows effectiveness in glaucoma support and knowledge with diverse analysis.•Web-based Xiaoqing offers an interactive platform for managing and understanding glaucoma. |
---|---|
ISSN: | 0010-4825 1879-0534 1879-0534 |
DOI: | 10.1016/j.compbiomed.2024.108399 |