Mechanically reinforced hydrogel vehicle delivering angiogenic factor for beta cell therapy

[Display omitted] Type 1 diabetes mellitus (T1DM) is a chronic disease affecting millions worldwide. Insulin therapy is currently the golden standard for treating T1DM; however, it does not restore the normal glycaemic balance entirely, which increases the risk of secondary complications. Beta-cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-08, Vol.667, p.54-63
Hauptverfasser: Toftdal, Mette Steen, Christensen, Natasja Porskjær, Kadumudi, Firoz Babu, Dolatshahi-Pirouz, Alireza, Grunnet, Lars Groth, Chen, Menglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Type 1 diabetes mellitus (T1DM) is a chronic disease affecting millions worldwide. Insulin therapy is currently the golden standard for treating T1DM; however, it does not restore the normal glycaemic balance entirely, which increases the risk of secondary complications. Beta-cell therapy may be a possible way of curing T1DM and has already shown promising results in the clinic. However, low retention rates, poor cell survival, and limited therapeutic potential are ongoing challenges, thus increasing the need for better cell encapsulation devices. This study aimed to develop a mechanically reinforced vascular endothelial growth factor (VEGF)-delivering encapsulation device suitable for beta cell encapsulation and transplantation. Poly(l-lactide-co-ε-caprolactone) (PLCL)/gelatin methacryloyl (GelMA)/alginate coaxial nanofibres were produced using electrospinning and embedded in an alginate hydrogel. The encapsulation device was physically and biologically characterised and was found to be suitable for INS-1E beta cell encapsulation, vascularization, and transplantation in terms of its biocompatibility, porosity, swelling ratio and mechanical properties. Lastly, VEGF was incorporated into the hydrogel and the release kinetics and functional studies revealed a sustained release of bioactive VEGF for at least 14 days, making the modified alginate system a promising candidate for improving the beta cell survival after transplantation.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2024.04.050