Multiporous ZIF-8 carbon/cellulose composite beads: Highly efficient and scalable adsorbents for water treatment

Metal–organic framework (MOF) particles are one of the most promising adsorbents for removing organic contaminants from wastewater. However, powder-type MOF particles face challenges in terms of utilization and recovery. In this study, a novel bead-type adsorbent was prepared using activated carbon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2024-07, Vol.335, p.122047-122047, Article 122047
Hauptverfasser: Lee, Kangyun, Jeon, Youngho, Kwon, Goomin, Lee, Suji, Ko, Youngsang, Park, Jisoo, Kim, Jeonghun, You, Jungmok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal–organic framework (MOF) particles are one of the most promising adsorbents for removing organic contaminants from wastewater. However, powder-type MOF particles face challenges in terms of utilization and recovery. In this study, a novel bead-type adsorbent was prepared using activated carbon based on the zeolitic imidazolate framework-8 (AC-ZIF-8) and a regenerated cellulose hydrogel for dye removal. AC-ZIF-8 particles with a large surface area were obtained by carbonization and chemical activation with KOH. The AC-ZIF-8 powders were efficiently immobilized in hydrophilic cellulose hydrogel beads via cellulose dissolution/regeneration. The prepared AC-ZIF-8/cellulose hydrogel (AC-ZIF-8/CH) composite beads exhibit a large specific surface area of 1412.8 m2/g and an excellent maximum adsorption capacity of 565.13 mg/g for Rhodamine B (RhB). Moreover, the AC-ZIF-8/CH beads were effective over a wide range of pH, temperatures and for different types of dyes. These composite beads also offer economic benefits through desorption of dyes for recycling. The AC-ZIF-8/CH beads can be produced in substantial amounts and used as fillers in a fixed-bed column system, which can purify the continuous inflow of dye solutions. These findings suggest that our simple approach for preparing high-performance adsorbent beads will broaden the application of dye adsorbents, oil–water separation, and catalysts. [Display omitted]
ISSN:0144-8617
1879-1344
DOI:10.1016/j.carbpol.2024.122047