Fate of Chiral Symmetries in the Quark-Gluon Plasma from an Instanton-Based Random Matrix Model of QCD
We propose a new way of understanding how chiral symmetry is realized in the high temperature phase of QCD. Based on the finding that a simple free instanton gas precisely describes the details of the lowest part of the spectrum of the lattice overlap Dirac operator, we propose an instanton-based ra...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2024-03, Vol.132 (13), p.131902-131902, Article 131902 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a new way of understanding how chiral symmetry is realized in the high temperature phase of QCD. Based on the finding that a simple free instanton gas precisely describes the details of the lowest part of the spectrum of the lattice overlap Dirac operator, we propose an instanton-based random matrix model of QCD with dynamical quarks. Simulations of this model reveal that even for small quark mass the Dirac spectral density has a singularity at the origin, caused by a dilute gas of free instantons. Even though the interaction, mediated by light dynamical quarks, creates small instanton-anti-instanton molecules, those do not influence the singular part of the spectrum, and this singular part is shown to dominate Banks-Casher type sums in the chiral limit. By generalizing the Banks-Casher formula for the singular spectrum, we show that in the chiral limit the chiral condensate vanishes if there are at least two massless flavors. Our model also indicates a possible way of resolving a long-standing debate, as it suggests that for two massless quark flavors the U(1)_{A} symmetry is likely to remain broken up to arbitrarily high finite temperatures. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.132.131902 |