The non-decussating and decussating trigeminothalamic tracts in humans: A combination of connectome-based tractography and histological validation

Background Functional anatomical research proposed the existence of a bilateral trigeminal ascending system although the anatomy trajectories of the trigeminothalamic connections cranial to the pons remain largely elusive. This study therefore aimed to clarify the anatomical distributions of the tri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cephalalgia 2024-04, Vol.44 (4), p.3331024241235168-3331024241235168
Hauptverfasser: Henssen, Dylan J.H.A., Pritsch, Cynthia, Nazari, Pouyan, Mulleners, Wim, Vissers, Kris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Functional anatomical research proposed the existence of a bilateral trigeminal ascending system although the anatomy trajectories of the trigeminothalamic connections cranial to the pons remain largely elusive. This study therefore aimed to clarify the anatomical distributions of the trigeminothalamic connections in humans. Methods Advanced deterministic tractography to an averaged template of diffusion tensor imaging data from 1065 subjects from the Human Connectome Project was used. Seedings masks were placed in Montreal Neurological Institute standard space by use of the BigBrain histological dataset. Waypoint masks of the sensory thalamus was obtained from the Brainnetome Atlas. Results Tractography results were validated by use of the BigBrain histological dataset and Polarized Light Imaging microscopy. The trigeminothalamic tract bifurcated into a decussating ventral and a non-decussating dorsal tract. The ventral and dorsal tracts ascended to the contralateral thalamus and ipsilateral thalamus and reflected the ventral trigeminothalamic tract and the dorsal trigeminothalamic tract, respectively. The projection of the ventral trigeminothalamic tract and the dorsal trigeminothalamic tract to both thalami confirm the existence of a bilateral trigeminothalamic system in humans. Conclusions Because our study is strictly anatomical, no further conclusions can be drawn with regard to physiological functionality. Future research should explore if the dorsal trigeminothalamic tract and the ventral trigeminothalamic tract actually transmit signals from noxious stimuli, this offers potential in understanding and possibly treating neuropathology in the orofacial region.
ISSN:0333-1024
1468-2982
DOI:10.1177/03331024241235168