PBDB-T/Pentacene-Based Organic Optoelectronic Synaptic Transistor with Adjustable Critical Flicker Fusion Frequency for Dynamic Vision

In the era of the Internet of Things and the rapid progress of artificial intelligence, there is a growing demand for advanced dynamic vision systems. Vision systems are no longer confined to static object detection and recognition, as the detection and recognition of moving objects are becoming inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-04, Vol.16 (16), p.20843-20851
Hauptverfasser: Qian, Yangzhou, Li, Jiayu, Li, Wen, Huang, Wanxin, Ling, Haifeng, Shi, Wei, Wang, Jin, Huang, Wei, Yi, Mingdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the era of the Internet of Things and the rapid progress of artificial intelligence, there is a growing demand for advanced dynamic vision systems. Vision systems are no longer confined to static object detection and recognition, as the detection and recognition of moving objects are becoming increasingly important. To meet the requirements for more precise and efficient dynamic vision, the development of adaptive multimodal motion detection devices becomes imperative. Inspired by the varied response rates in biological vision, we introduce the concept of critical flicker fusion frequency (cFFF) and develop an organic optoelectronic synaptic transistor with adjustable cFFF. In situ Kelvin probe force microscopy analysis reveals that light signal recognition in this device originates from charge transfer in the poly­[(2,6-(4,8-bis­(5-(2-ethylhexyl)­thiophen-2-yl)­benzo­[1,2-b:4,5-b′]­dithiophene)-co-(1,3-di­(5-thiophene-2-yl)-5,7-bis­(2-ethylhexyl)-benzo­[1,2-c:4,5-c′]­dithiophene-4,8-dione)] (PBDB-T)/pentacene heterojunction, which can be effectively modulated by gate voltage. Building upon this, we implement different cFFF within a single device to facilitate the detection and recognition of objects moving at different speeds. This approach allows for resource allocation during dynamic detection, resulting in a reduction in power consumption. Our research holds great potential for enhancing the capabilities of dynamic visual systems.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c19165