A dynamic regulatory switch for phase separation of FUS protein: Zinc ions and zinc finger domain

Zinc is an important trace element in the human body, and its homeostasis is closely related to amyotrophic lateral sclerosis (ALS). Cytoplasmic FUS proteins from patients with ALS aggregate their important pathologic markers. Liquid-liquid phase separation (LLPS) of FUS can lead to its aggregation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2024-05, Vol.710, p.149862, Article 149862
Hauptverfasser: Chen, Yatao, Pei, Xiaoying, Chen, Long, Chen, Liming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zinc is an important trace element in the human body, and its homeostasis is closely related to amyotrophic lateral sclerosis (ALS). Cytoplasmic FUS proteins from patients with ALS aggregate their important pathologic markers. Liquid-liquid phase separation (LLPS) of FUS can lead to its aggregation. However, whether and how zinc homeostasis affects the aggregation of disease-associated FUS proteins in the cytoplasm remains unclear. Here, we found that zinc ion enhances LLPS and promotes the aggregation in the cytoplasm for FUS protein. In the FUS, the cysteine of the zinc finger (ZnF), recognizes and binds to zinc ions, reducing droplet mobility and enhancing protein aggregation in the cytoplasm. The mutation of FUS cysteine disrupts the dynamic regulatory switch of zinc ions and ZnF, resulting in insensitivity to zinc ions. These results suggest that the dynamic regulation of LLPS by binding with zinc ions may be a widespread mechanism and provide a new understanding of neurological diseases such as ALS and other ZnF protein-related diseases. •Zinc enhances FUS liquid-liquid phase separation in vitro.•Zinc enhances FUS-P525L stress granules recruitment in cell.•ZnF and zinc dynamically regulates FUS phase separation.
ISSN:0006-291X
1090-2104
1090-2104
DOI:10.1016/j.bbrc.2024.149862