Performance Improvement for the CuCrZr Alloy Produced by Laser Powder Bed Fusion Using the Remelting Process

Owing to the high optical reflectivity of copper powder, the high-performance fabrication of copper alloys in the laser additive manufacturing (AM) field is problematic. To tackle this issue, this study employs the remelting process during laser powder bed fusion AM to fabricate defect-free and high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-01, Vol.17 (3), p.624
Hauptverfasser: Xu, Lianyong, Zhang, Yaqing, Zhao, Lei, Ren, Wenjing, Han, Yongdian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 624
container_title Materials
container_volume 17
creator Xu, Lianyong
Zhang, Yaqing
Zhao, Lei
Ren, Wenjing
Han, Yongdian
description Owing to the high optical reflectivity of copper powder, the high-performance fabrication of copper alloys in the laser additive manufacturing (AM) field is problematic. To tackle this issue, this study employs the remelting process during laser powder bed fusion AM to fabricate defect-free and high-performance CuCrZr alloy. Compared to the non-remelting process, the remelting process yields finer grains, smaller precipitates, denser dislocations, and smaller dislocation cells. It realizes not only the dense molding of high laser reflectivity powders but also excellent mechanical properties and electrical conductivity (with an ultimate tensile strength of 329 MPa and conductivity of 96% IACS) without post-heat treatment. Furthermore, this study elucidates the influence of complex thermal gradients and multiple thermal cycles on the manufacturing process under the remelting process, as well as the internal mechanisms of microstructure evolution and performance improvement.
doi_str_mv 10.3390/ma17030624
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3035074833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782091482</galeid><sourcerecordid>A782091482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-e45b23ab75c75860ebacdcb376794a5575c4e6514e283d0e7cc5a54e1b597893</originalsourceid><addsrcrecordid>eNpdUcFO3DAQtVArQFsufACy1EtVaamdsWP7uKxKQVqpq4peuESOM4GgJAY7abV_36ELbVXPYTxP741n_Bg7leIcwIlPg5dGgCgLdcCOpXPlUjql3vxzP2InOT8IOgDSFu6QHYHVTiqQx6zfYmpjGvwYkF8Pjyn-wAHHiRPIp3vk63mdbhNf9X3c8W2KzRyw4fWOb3zGxLfxZ0PpgrDLOXdx5N9zN979ln6jTv30XJEuYM7v2NvW9xlPXvKC3Vx-vllfLTdfv1yvV5tloI2mJSpdF-Bro4PRthRY-9CEGkxpnPJaE66w1FJhYaERaELQXiuUtXbGOliwD_u2tM3TjHmqhi4H7Hs_YpxzBQK0MMoCEPX9f9SHOKeRhqsKV4DTVtAbC3a-Z935HqtubOOUfKBocOhCHLHtCF8ZWwj6VluQ4ONeEFLMOWFbPaZu8GlXSVE921b9tY3IZy8zzPWAzR_qq0nwC5hKkKs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923958028</pqid></control><display><type>article</type><title>Performance Improvement for the CuCrZr Alloy Produced by Laser Powder Bed Fusion Using the Remelting Process</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Xu, Lianyong ; Zhang, Yaqing ; Zhao, Lei ; Ren, Wenjing ; Han, Yongdian</creator><creatorcontrib>Xu, Lianyong ; Zhang, Yaqing ; Zhao, Lei ; Ren, Wenjing ; Han, Yongdian</creatorcontrib><description>Owing to the high optical reflectivity of copper powder, the high-performance fabrication of copper alloys in the laser additive manufacturing (AM) field is problematic. To tackle this issue, this study employs the remelting process during laser powder bed fusion AM to fabricate defect-free and high-performance CuCrZr alloy. Compared to the non-remelting process, the remelting process yields finer grains, smaller precipitates, denser dislocations, and smaller dislocation cells. It realizes not only the dense molding of high laser reflectivity powders but also excellent mechanical properties and electrical conductivity (with an ultimate tensile strength of 329 MPa and conductivity of 96% IACS) without post-heat treatment. Furthermore, this study elucidates the influence of complex thermal gradients and multiple thermal cycles on the manufacturing process under the remelting process, as well as the internal mechanisms of microstructure evolution and performance improvement.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17030624</identifier><identifier>PMID: 38591431</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3D printing ; Beds (process engineering) ; Comparative analysis ; Conductivity ; Copper ; Copper alloys ; Copper base alloys ; Copper products ; Density ; Dislocation density ; Electric properties ; Electrical conductivity ; Electrical resistivity ; Energy ; Heat treatment ; International economic relations ; Laser industry ; Lasers ; Manufacturing ; Mechanical properties ; Medical equipment ; Melting ; Particle size ; Powder beds ; Powders ; Precipitates ; Production processes ; Reflectance ; Temperature gradients ; Titanium alloys ; Ultimate tensile strength</subject><ispartof>Materials, 2024-01, Vol.17 (3), p.624</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-e45b23ab75c75860ebacdcb376794a5575c4e6514e283d0e7cc5a54e1b597893</citedby><cites>FETCH-LOGICAL-c390t-e45b23ab75c75860ebacdcb376794a5575c4e6514e283d0e7cc5a54e1b597893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38591431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Lianyong</creatorcontrib><creatorcontrib>Zhang, Yaqing</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Ren, Wenjing</creatorcontrib><creatorcontrib>Han, Yongdian</creatorcontrib><title>Performance Improvement for the CuCrZr Alloy Produced by Laser Powder Bed Fusion Using the Remelting Process</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Owing to the high optical reflectivity of copper powder, the high-performance fabrication of copper alloys in the laser additive manufacturing (AM) field is problematic. To tackle this issue, this study employs the remelting process during laser powder bed fusion AM to fabricate defect-free and high-performance CuCrZr alloy. Compared to the non-remelting process, the remelting process yields finer grains, smaller precipitates, denser dislocations, and smaller dislocation cells. It realizes not only the dense molding of high laser reflectivity powders but also excellent mechanical properties and electrical conductivity (with an ultimate tensile strength of 329 MPa and conductivity of 96% IACS) without post-heat treatment. Furthermore, this study elucidates the influence of complex thermal gradients and multiple thermal cycles on the manufacturing process under the remelting process, as well as the internal mechanisms of microstructure evolution and performance improvement.</description><subject>3D printing</subject><subject>Beds (process engineering)</subject><subject>Comparative analysis</subject><subject>Conductivity</subject><subject>Copper</subject><subject>Copper alloys</subject><subject>Copper base alloys</subject><subject>Copper products</subject><subject>Density</subject><subject>Dislocation density</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy</subject><subject>Heat treatment</subject><subject>International economic relations</subject><subject>Laser industry</subject><subject>Lasers</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Medical equipment</subject><subject>Melting</subject><subject>Particle size</subject><subject>Powder beds</subject><subject>Powders</subject><subject>Precipitates</subject><subject>Production processes</subject><subject>Reflectance</subject><subject>Temperature gradients</subject><subject>Titanium alloys</subject><subject>Ultimate tensile strength</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUcFO3DAQtVArQFsufACy1EtVaamdsWP7uKxKQVqpq4peuESOM4GgJAY7abV_36ELbVXPYTxP741n_Bg7leIcwIlPg5dGgCgLdcCOpXPlUjql3vxzP2InOT8IOgDSFu6QHYHVTiqQx6zfYmpjGvwYkF8Pjyn-wAHHiRPIp3vk63mdbhNf9X3c8W2KzRyw4fWOb3zGxLfxZ0PpgrDLOXdx5N9zN979ln6jTv30XJEuYM7v2NvW9xlPXvKC3Vx-vllfLTdfv1yvV5tloI2mJSpdF-Bro4PRthRY-9CEGkxpnPJaE66w1FJhYaERaELQXiuUtXbGOliwD_u2tM3TjHmqhi4H7Hs_YpxzBQK0MMoCEPX9f9SHOKeRhqsKV4DTVtAbC3a-Z935HqtubOOUfKBocOhCHLHtCF8ZWwj6VluQ4ONeEFLMOWFbPaZu8GlXSVE921b9tY3IZy8zzPWAzR_qq0nwC5hKkKs</recordid><startdate>20240127</startdate><enddate>20240127</enddate><creator>Xu, Lianyong</creator><creator>Zhang, Yaqing</creator><creator>Zhao, Lei</creator><creator>Ren, Wenjing</creator><creator>Han, Yongdian</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20240127</creationdate><title>Performance Improvement for the CuCrZr Alloy Produced by Laser Powder Bed Fusion Using the Remelting Process</title><author>Xu, Lianyong ; Zhang, Yaqing ; Zhao, Lei ; Ren, Wenjing ; Han, Yongdian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-e45b23ab75c75860ebacdcb376794a5575c4e6514e283d0e7cc5a54e1b597893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D printing</topic><topic>Beds (process engineering)</topic><topic>Comparative analysis</topic><topic>Conductivity</topic><topic>Copper</topic><topic>Copper alloys</topic><topic>Copper base alloys</topic><topic>Copper products</topic><topic>Density</topic><topic>Dislocation density</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy</topic><topic>Heat treatment</topic><topic>International economic relations</topic><topic>Laser industry</topic><topic>Lasers</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Medical equipment</topic><topic>Melting</topic><topic>Particle size</topic><topic>Powder beds</topic><topic>Powders</topic><topic>Precipitates</topic><topic>Production processes</topic><topic>Reflectance</topic><topic>Temperature gradients</topic><topic>Titanium alloys</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Lianyong</creatorcontrib><creatorcontrib>Zhang, Yaqing</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Ren, Wenjing</creatorcontrib><creatorcontrib>Han, Yongdian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Lianyong</au><au>Zhang, Yaqing</au><au>Zhao, Lei</au><au>Ren, Wenjing</au><au>Han, Yongdian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Improvement for the CuCrZr Alloy Produced by Laser Powder Bed Fusion Using the Remelting Process</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-01-27</date><risdate>2024</risdate><volume>17</volume><issue>3</issue><spage>624</spage><pages>624-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Owing to the high optical reflectivity of copper powder, the high-performance fabrication of copper alloys in the laser additive manufacturing (AM) field is problematic. To tackle this issue, this study employs the remelting process during laser powder bed fusion AM to fabricate defect-free and high-performance CuCrZr alloy. Compared to the non-remelting process, the remelting process yields finer grains, smaller precipitates, denser dislocations, and smaller dislocation cells. It realizes not only the dense molding of high laser reflectivity powders but also excellent mechanical properties and electrical conductivity (with an ultimate tensile strength of 329 MPa and conductivity of 96% IACS) without post-heat treatment. Furthermore, this study elucidates the influence of complex thermal gradients and multiple thermal cycles on the manufacturing process under the remelting process, as well as the internal mechanisms of microstructure evolution and performance improvement.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38591431</pmid><doi>10.3390/ma17030624</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-01, Vol.17 (3), p.624
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3035074833
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects 3D printing
Beds (process engineering)
Comparative analysis
Conductivity
Copper
Copper alloys
Copper base alloys
Copper products
Density
Dislocation density
Electric properties
Electrical conductivity
Electrical resistivity
Energy
Heat treatment
International economic relations
Laser industry
Lasers
Manufacturing
Mechanical properties
Medical equipment
Melting
Particle size
Powder beds
Powders
Precipitates
Production processes
Reflectance
Temperature gradients
Titanium alloys
Ultimate tensile strength
title Performance Improvement for the CuCrZr Alloy Produced by Laser Powder Bed Fusion Using the Remelting Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Improvement%20for%20the%20CuCrZr%20Alloy%20Produced%20by%20Laser%20Powder%20Bed%20Fusion%20Using%20the%20Remelting%20Process&rft.jtitle=Materials&rft.au=Xu,%20Lianyong&rft.date=2024-01-27&rft.volume=17&rft.issue=3&rft.spage=624&rft.pages=624-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17030624&rft_dat=%3Cgale_proqu%3EA782091482%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923958028&rft_id=info:pmid/38591431&rft_galeid=A782091482&rfr_iscdi=true