Performance Improvement for the CuCrZr Alloy Produced by Laser Powder Bed Fusion Using the Remelting Process
Owing to the high optical reflectivity of copper powder, the high-performance fabrication of copper alloys in the laser additive manufacturing (AM) field is problematic. To tackle this issue, this study employs the remelting process during laser powder bed fusion AM to fabricate defect-free and high...
Gespeichert in:
Veröffentlicht in: | Materials 2024-01, Vol.17 (3), p.624 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 624 |
container_title | Materials |
container_volume | 17 |
creator | Xu, Lianyong Zhang, Yaqing Zhao, Lei Ren, Wenjing Han, Yongdian |
description | Owing to the high optical reflectivity of copper powder, the high-performance fabrication of copper alloys in the laser additive manufacturing (AM) field is problematic. To tackle this issue, this study employs the remelting process during laser powder bed fusion AM to fabricate defect-free and high-performance CuCrZr alloy. Compared to the non-remelting process, the remelting process yields finer grains, smaller precipitates, denser dislocations, and smaller dislocation cells. It realizes not only the dense molding of high laser reflectivity powders but also excellent mechanical properties and electrical conductivity (with an ultimate tensile strength of 329 MPa and conductivity of 96% IACS) without post-heat treatment. Furthermore, this study elucidates the influence of complex thermal gradients and multiple thermal cycles on the manufacturing process under the remelting process, as well as the internal mechanisms of microstructure evolution and performance improvement. |
doi_str_mv | 10.3390/ma17030624 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3035074833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782091482</galeid><sourcerecordid>A782091482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-e45b23ab75c75860ebacdcb376794a5575c4e6514e283d0e7cc5a54e1b597893</originalsourceid><addsrcrecordid>eNpdUcFO3DAQtVArQFsufACy1EtVaamdsWP7uKxKQVqpq4peuESOM4GgJAY7abV_36ELbVXPYTxP741n_Bg7leIcwIlPg5dGgCgLdcCOpXPlUjql3vxzP2InOT8IOgDSFu6QHYHVTiqQx6zfYmpjGvwYkF8Pjyn-wAHHiRPIp3vk63mdbhNf9X3c8W2KzRyw4fWOb3zGxLfxZ0PpgrDLOXdx5N9zN979ln6jTv30XJEuYM7v2NvW9xlPXvKC3Vx-vllfLTdfv1yvV5tloI2mJSpdF-Bro4PRthRY-9CEGkxpnPJaE66w1FJhYaERaELQXiuUtXbGOliwD_u2tM3TjHmqhi4H7Hs_YpxzBQK0MMoCEPX9f9SHOKeRhqsKV4DTVtAbC3a-Z935HqtubOOUfKBocOhCHLHtCF8ZWwj6VluQ4ONeEFLMOWFbPaZu8GlXSVE921b9tY3IZy8zzPWAzR_qq0nwC5hKkKs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923958028</pqid></control><display><type>article</type><title>Performance Improvement for the CuCrZr Alloy Produced by Laser Powder Bed Fusion Using the Remelting Process</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Xu, Lianyong ; Zhang, Yaqing ; Zhao, Lei ; Ren, Wenjing ; Han, Yongdian</creator><creatorcontrib>Xu, Lianyong ; Zhang, Yaqing ; Zhao, Lei ; Ren, Wenjing ; Han, Yongdian</creatorcontrib><description>Owing to the high optical reflectivity of copper powder, the high-performance fabrication of copper alloys in the laser additive manufacturing (AM) field is problematic. To tackle this issue, this study employs the remelting process during laser powder bed fusion AM to fabricate defect-free and high-performance CuCrZr alloy. Compared to the non-remelting process, the remelting process yields finer grains, smaller precipitates, denser dislocations, and smaller dislocation cells. It realizes not only the dense molding of high laser reflectivity powders but also excellent mechanical properties and electrical conductivity (with an ultimate tensile strength of 329 MPa and conductivity of 96% IACS) without post-heat treatment. Furthermore, this study elucidates the influence of complex thermal gradients and multiple thermal cycles on the manufacturing process under the remelting process, as well as the internal mechanisms of microstructure evolution and performance improvement.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17030624</identifier><identifier>PMID: 38591431</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3D printing ; Beds (process engineering) ; Comparative analysis ; Conductivity ; Copper ; Copper alloys ; Copper base alloys ; Copper products ; Density ; Dislocation density ; Electric properties ; Electrical conductivity ; Electrical resistivity ; Energy ; Heat treatment ; International economic relations ; Laser industry ; Lasers ; Manufacturing ; Mechanical properties ; Medical equipment ; Melting ; Particle size ; Powder beds ; Powders ; Precipitates ; Production processes ; Reflectance ; Temperature gradients ; Titanium alloys ; Ultimate tensile strength</subject><ispartof>Materials, 2024-01, Vol.17 (3), p.624</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-e45b23ab75c75860ebacdcb376794a5575c4e6514e283d0e7cc5a54e1b597893</citedby><cites>FETCH-LOGICAL-c390t-e45b23ab75c75860ebacdcb376794a5575c4e6514e283d0e7cc5a54e1b597893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38591431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Lianyong</creatorcontrib><creatorcontrib>Zhang, Yaqing</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Ren, Wenjing</creatorcontrib><creatorcontrib>Han, Yongdian</creatorcontrib><title>Performance Improvement for the CuCrZr Alloy Produced by Laser Powder Bed Fusion Using the Remelting Process</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Owing to the high optical reflectivity of copper powder, the high-performance fabrication of copper alloys in the laser additive manufacturing (AM) field is problematic. To tackle this issue, this study employs the remelting process during laser powder bed fusion AM to fabricate defect-free and high-performance CuCrZr alloy. Compared to the non-remelting process, the remelting process yields finer grains, smaller precipitates, denser dislocations, and smaller dislocation cells. It realizes not only the dense molding of high laser reflectivity powders but also excellent mechanical properties and electrical conductivity (with an ultimate tensile strength of 329 MPa and conductivity of 96% IACS) without post-heat treatment. Furthermore, this study elucidates the influence of complex thermal gradients and multiple thermal cycles on the manufacturing process under the remelting process, as well as the internal mechanisms of microstructure evolution and performance improvement.</description><subject>3D printing</subject><subject>Beds (process engineering)</subject><subject>Comparative analysis</subject><subject>Conductivity</subject><subject>Copper</subject><subject>Copper alloys</subject><subject>Copper base alloys</subject><subject>Copper products</subject><subject>Density</subject><subject>Dislocation density</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy</subject><subject>Heat treatment</subject><subject>International economic relations</subject><subject>Laser industry</subject><subject>Lasers</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Medical equipment</subject><subject>Melting</subject><subject>Particle size</subject><subject>Powder beds</subject><subject>Powders</subject><subject>Precipitates</subject><subject>Production processes</subject><subject>Reflectance</subject><subject>Temperature gradients</subject><subject>Titanium alloys</subject><subject>Ultimate tensile strength</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUcFO3DAQtVArQFsufACy1EtVaamdsWP7uKxKQVqpq4peuESOM4GgJAY7abV_36ELbVXPYTxP741n_Bg7leIcwIlPg5dGgCgLdcCOpXPlUjql3vxzP2InOT8IOgDSFu6QHYHVTiqQx6zfYmpjGvwYkF8Pjyn-wAHHiRPIp3vk63mdbhNf9X3c8W2KzRyw4fWOb3zGxLfxZ0PpgrDLOXdx5N9zN979ln6jTv30XJEuYM7v2NvW9xlPXvKC3Vx-vllfLTdfv1yvV5tloI2mJSpdF-Bro4PRthRY-9CEGkxpnPJaE66w1FJhYaERaELQXiuUtXbGOliwD_u2tM3TjHmqhi4H7Hs_YpxzBQK0MMoCEPX9f9SHOKeRhqsKV4DTVtAbC3a-Z935HqtubOOUfKBocOhCHLHtCF8ZWwj6VluQ4ONeEFLMOWFbPaZu8GlXSVE921b9tY3IZy8zzPWAzR_qq0nwC5hKkKs</recordid><startdate>20240127</startdate><enddate>20240127</enddate><creator>Xu, Lianyong</creator><creator>Zhang, Yaqing</creator><creator>Zhao, Lei</creator><creator>Ren, Wenjing</creator><creator>Han, Yongdian</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20240127</creationdate><title>Performance Improvement for the CuCrZr Alloy Produced by Laser Powder Bed Fusion Using the Remelting Process</title><author>Xu, Lianyong ; Zhang, Yaqing ; Zhao, Lei ; Ren, Wenjing ; Han, Yongdian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-e45b23ab75c75860ebacdcb376794a5575c4e6514e283d0e7cc5a54e1b597893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D printing</topic><topic>Beds (process engineering)</topic><topic>Comparative analysis</topic><topic>Conductivity</topic><topic>Copper</topic><topic>Copper alloys</topic><topic>Copper base alloys</topic><topic>Copper products</topic><topic>Density</topic><topic>Dislocation density</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy</topic><topic>Heat treatment</topic><topic>International economic relations</topic><topic>Laser industry</topic><topic>Lasers</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Medical equipment</topic><topic>Melting</topic><topic>Particle size</topic><topic>Powder beds</topic><topic>Powders</topic><topic>Precipitates</topic><topic>Production processes</topic><topic>Reflectance</topic><topic>Temperature gradients</topic><topic>Titanium alloys</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Lianyong</creatorcontrib><creatorcontrib>Zhang, Yaqing</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Ren, Wenjing</creatorcontrib><creatorcontrib>Han, Yongdian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Lianyong</au><au>Zhang, Yaqing</au><au>Zhao, Lei</au><au>Ren, Wenjing</au><au>Han, Yongdian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Improvement for the CuCrZr Alloy Produced by Laser Powder Bed Fusion Using the Remelting Process</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-01-27</date><risdate>2024</risdate><volume>17</volume><issue>3</issue><spage>624</spage><pages>624-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Owing to the high optical reflectivity of copper powder, the high-performance fabrication of copper alloys in the laser additive manufacturing (AM) field is problematic. To tackle this issue, this study employs the remelting process during laser powder bed fusion AM to fabricate defect-free and high-performance CuCrZr alloy. Compared to the non-remelting process, the remelting process yields finer grains, smaller precipitates, denser dislocations, and smaller dislocation cells. It realizes not only the dense molding of high laser reflectivity powders but also excellent mechanical properties and electrical conductivity (with an ultimate tensile strength of 329 MPa and conductivity of 96% IACS) without post-heat treatment. Furthermore, this study elucidates the influence of complex thermal gradients and multiple thermal cycles on the manufacturing process under the remelting process, as well as the internal mechanisms of microstructure evolution and performance improvement.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38591431</pmid><doi>10.3390/ma17030624</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-01, Vol.17 (3), p.624 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3035074833 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | 3D printing Beds (process engineering) Comparative analysis Conductivity Copper Copper alloys Copper base alloys Copper products Density Dislocation density Electric properties Electrical conductivity Electrical resistivity Energy Heat treatment International economic relations Laser industry Lasers Manufacturing Mechanical properties Medical equipment Melting Particle size Powder beds Powders Precipitates Production processes Reflectance Temperature gradients Titanium alloys Ultimate tensile strength |
title | Performance Improvement for the CuCrZr Alloy Produced by Laser Powder Bed Fusion Using the Remelting Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Improvement%20for%20the%20CuCrZr%20Alloy%20Produced%20by%20Laser%20Powder%20Bed%20Fusion%20Using%20the%20Remelting%20Process&rft.jtitle=Materials&rft.au=Xu,%20Lianyong&rft.date=2024-01-27&rft.volume=17&rft.issue=3&rft.spage=624&rft.pages=624-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17030624&rft_dat=%3Cgale_proqu%3EA782091482%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2923958028&rft_id=info:pmid/38591431&rft_galeid=A782091482&rfr_iscdi=true |