Complete biodegradation of tetrabromobisphenol A through sequential anaerobic reductive dehalogenation and aerobic oxidation

Tetrabromobisphenol A (TBBPA), a common brominated flame retardant and a notorious pollutant in anaerobic environments, resists aerobic degradation but can undergo reductive dehalogenation to produce bisphenol A (BPA), an endocrine disruptor. Conversely, BPA is resistant to anaerobic biodegradation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2024-05, Vol.470, p.134217, Article 134217
Hauptverfasser: Liu, Guiping, Liu, Songmeng, Yang, Jie, Zhang, Xiaoyang, Lu, Lianghua, Xu, Hongxia, Ye, Shujun, Wu, Jichun, Jiang, Jiandong, Qiao, Wenjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tetrabromobisphenol A (TBBPA), a common brominated flame retardant and a notorious pollutant in anaerobic environments, resists aerobic degradation but can undergo reductive dehalogenation to produce bisphenol A (BPA), an endocrine disruptor. Conversely, BPA is resistant to anaerobic biodegradation but susceptible to aerobic degradation. Microbial degradation of TBBPA via anoxic/oxic processes is scarcely documented. We established an anaerobic microcosm for TBBPA dehalogenation to BPA facilitated by humin. Dehalobacter species increased with a growth yield of 1.5 × 108 cells per μmol Br- released, suggesting their role in TBBPA dehalogenation. We innovatively achieved complete and sustainable biodegradation of TBBPA in sand/soil columns columns, synergizing TBBPA reductive dehalogenation by anaerobic functional microbiota and BPA aerobic oxidation by Sphingomonas sp. strain TTNP3. Over 42 days, 95.11 % of the injected TBBPA in three batches was debrominated to BPA. Following injection of strain TTNP3 cells, 85.57 % of BPA was aerobically degraded. Aerobic BPA degradation column experiments also indicated that aeration and cell colonization significantly increased degradation rates. This treatment strategy provides valuable technical insights for complete TBBPA biodegradation and analogous contaminants. [Display omitted] •Tetrabromobisphenol A (TBBPA) was completely debrominated by Dehalobacter in a microbiota.•Bisphenol A was efficiently degraded by Sphingomonas sp. TTNP3 in aerobic columns.•TBBPA was sustainably and completely degraded through sequential anoxic-oxic treatments.
ISSN:0304-3894
1873-3336
1873-3336
DOI:10.1016/j.jhazmat.2024.134217