Limb and joint kinetics during walking in individuals with Mild-Moderate Parkinson’s disease

Given the known deficits in spatiotemporal aspects of gait for people with Parkinson’s disease (PD), we sought to determine the underlying gait abnormalities in limb and joint kinetics, and examine how deficits in push-off and leg swing might contribute to the shortened step lengths for people with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2024-04, Vol.167, p.112076-112076, Article 112076
Hauptverfasser: Hayworth, Emily M, Casnave, Stephanie M, Duppen, Chelsea, Rowland, David, Browner, Nina, Lewek, Michael D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given the known deficits in spatiotemporal aspects of gait for people with Parkinson’s disease (PD), we sought to determine the underlying gait abnormalities in limb and joint kinetics, and examine how deficits in push-off and leg swing might contribute to the shortened step lengths for people with PD. Ten participants with PD and 11 age-matched control participants walked overground and on an instrumented treadmill. Participants with PD then walked on the treadmill with a posteriorly directed restraining force applied to 1) the pelvis to challenge push-off and 2) the ankles to challenge leg swing. Spatiotemporal, kinematic, and force data were collected and compared between groups and conditions. Despite group differences in spatiotemporal measures during overground walking, we did not observe these differences when the groups walked on a treadmill at comparable speeds. Nevertheless, the hip extension impulse appeared smaller in the PD group during their typical walking. When challenging limb propulsion, participants in the PD group maintained step lengths by increasing the propulsive impulse. Participants with PD were also able to maintain their typical step length against resistance intended to impede swing limb advancement, and even increased step lengths with cuing. The presence of reduced hip extension torque might be an early indicator of gait deterioration in this neurodegenerative disease. Our participants with PD were able to increase hip extension torque in response to needed demands. Additionally, participants with PD were able to increase limb propulsion and leg swing against resistance, suggesting a reserve in limb mechanics.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2024.112076