The influence of cation exchange on the possible mechanism of erionite toxicity: A synchrotron-based micro-X-ray fluorescence study on THP-1-derived macrophages exposed to erionite-Na

Fibrous erionite is the only zeolite classified as Group 1 carcinogen by the International Agency for Research on Cancer (IARC). Carcinogenesis induced by erionite is thought to involve several factors as biopersistence, the iron role and cation exchange processes. To better understand these mechani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2024-07, Vol.252, p.118878-118878, Article 118878
Hauptverfasser: Raneri, Simona, Gianoncelli, Alessandra, Bonanni, Valentina, Mirata, Serena, Scarfì, Sonia, Fornasini, Laura, Bersani, Danilo, Baroni, Debora, Picco, Cristiana, Gualtieri, Alessandro F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fibrous erionite is the only zeolite classified as Group 1 carcinogen by the International Agency for Research on Cancer (IARC). Carcinogenesis induced by erionite is thought to involve several factors as biopersistence, the iron role and cation exchange processes. To better understand these mechanisms, a detailed investigation at the micro scale was performed, collecting elemental information on iron and cation release and their distribution in biological systems by synchrotron micro-X-ray fluorescence mapping (SR-micro-XRF) and synchrotron micro-X-ray absorption spectroscopy (SR-micro-XANES) at the TwinMic beamline (Elettra synchrotron) and at the ID21 beamline of the European Synchrotron Radiation Facility (ESRF). By microscopy and chemical mapping, highly detailed maps of the chemical and morphological interaction of biological systems with fibres could be produced. In detail, THP-1 cell line derived macrophages, used as in vitro model, were analysed during erionite-Na phagocytosis at different time intervals, after single dose exposure. For comparison, cellular fluorescent probes were also used to evaluate the intracellular free sodium and calcium concentrations. Synchrotron analyses visualised the spatial distribution of both fibre and mineral particle associated metals during the phagocytosis, describing the mechanism of internalisation of erionite-Na and its accessory mineral phases. The intracellular distribution of metals and other cations was mapped to evaluate metal release, speciation changes and/or cation exchange during phagocytosis. The fluorescent probes complemented microchemical data clarifying, and confirming, the cation distribution observed in the SR-micro-XRF maps. The significant cytoplasmic calcium decrease, and the concomitant sodium increase, after the fibre phagocytosis seemed due to activation of plasma membrane cations exchangers triggered by the internalisation while, surprisingly, the ion-exchange capacity of erionite-Na could play a minor role in the disruption of the two cations intracellular homeostasis. These results help to elucidate the role of cations in the toxicity of erionite-treated THP-1 macrophages and add knowledge to its carcinogenicity process. [Display omitted] •Synchrotron XRF microscopy used to study fibrous erionite-Na phagocytosis for 96 h.•No metal release from the fibres was observable inside the macrophage cells.•No extraframework cation exchange was observable on the fibres inside the cells.•Intracel
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2024.118878