Metabolic Pathway Coupled with Fermentation Process Optimization for High-Level Production of Retinol in Yarrowia lipolytica

Retinol is a lipid-soluble form of vitamin A that is crucial for human visual and immune functions. The production of retinol through microbial fermentation has been the focus of recent exploration. However, the obtained titer remains limited and the product is often a mixture of retinal, retinol, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2024-04, Vol.72 (15), p.8664-8673
Hauptverfasser: Ren, Xuefeng, Liu, Mengsu, Yue, Mingyu, Zeng, Weizhu, Zhou, Shenghu, Zhou, Jingwen, Xu, Sha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Retinol is a lipid-soluble form of vitamin A that is crucial for human visual and immune functions. The production of retinol through microbial fermentation has been the focus of recent exploration. However, the obtained titer remains limited and the product is often a mixture of retinal, retinol, and retinoic acid, necessitating purification. To achieve efficient biosynthesis of retinol in Yarrowia lipolytica, we improved the metabolic flux of β-carotene to provide sufficient precursors for retinol in this study. Coupled with the optimization of the expression level of β-carotene 15,15′-dioxygenase, de novo production of retinol was achieved. Furthermore, Tween 80 was used as an extractant and butylated hydroxytoluene as an antioxidant to extract intracellular retinol and prevent retinol oxidation, respectively. This strategy significantly increased the level of retinol production. By optimizing the enzymes converting retinal to retinol, the proportion of extracellular retinol in the produced retinoids reached 100%, totaling 1042.3 mg/L. Finally, total retinol production reached 5.4 g/L through fed-batch fermentation in a 5 L bioreactor, comprising 4.2 g/L extracellular retinol and 1.2 g/L intracellular retinol. This achievement represents the highest reported titer so far and advances the industrial production of retinol.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.4c00377