Hydration Structure of 102No2+: A Density Functional Theory-Molecular Dynamics Study
The hydration structure of No2+, the divalent cation of nobelium in water, was investigated by ab initio molecular dynamics (MD) simulations. First, a series of benchmark calculations were performed to validate the density functional theory (DFT) calculation methods for a molecule containing a No at...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-04, Vol.128 (14), p.2717-2726 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hydration structure of No2+, the divalent cation of nobelium in water, was investigated by ab initio molecular dynamics (MD) simulations. First, a series of benchmark calculations were performed to validate the density functional theory (DFT) calculation methods for a molecule containing a No atom. The DFT-MD simulation of the hydration structure of No2+ was conducted after the MD method was validated by simulating the hydration structures of Ca2+ and Sr2+, whose behavior was previously reported to be similar to that of No2+. The model cluster containing M2+ (M = Ca, Sr, or No) and 32 water molecules was used for DFT-MD simulation. The results showed that the hydration distance of No2+ was intermediate between those of Ca2+ and Sr2+. This trend in the hydration distance is in good agreement with the elution position trend obtained in a previous radiochemical experiment. The calculated No–O bond lengths in the optimized structure of [No(H2O)8]2+ was 2.59 Å, while the average No–O bond length of [No(H2O)8]2+ in water by DFT-MD was 2.55 Å. This difference implies the importance of dynamic solvent effects, considering the second (and further) coordination sphere in the theoretical calculation of solution chemistry for superheavy elements. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.3c08063 |