Well-Performed Green Phosphor BaY4Si5O17:Ce3+,Tb3+ with High Quantum Efficiency and Thermal Stability
For Tb3+-doped green phosphors, the energy transfer from Ce3+ to Tb3+ can largely enhance the absorption of excitation; however, obtaining phosphors that exhibit both high quantum efficiency and thermal stability continues to pose a significant challenge. Herein, we established a paradigm to achieve...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2024-04, Vol.63 (14), p.6362-6369 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For Tb3+-doped green phosphors, the energy transfer from Ce3+ to Tb3+ can largely enhance the absorption of excitation; however, obtaining phosphors that exhibit both high quantum efficiency and thermal stability continues to pose a significant challenge. Herein, we established a paradigm to achieve novel silicate BaY4Si5O17 (BYSO):Ce3+,Tb3+. The near-ultraviolet light efficiently excites the BYSO:Ce3+ material, causing it to emit light at a wavelength of 408 nm. The photoluminescence of BYSO:0.12Ce3+ exhibits a relatively small Stokes shift and a thermal stability of 89.8% of the 303 K emission intensity at 423 K (89.8%@423 K). The energy transfer (ET) from Ce3+ to Tb3+ ions can be readily constructed in BYSO:Ce3+,Tb3+ utilizing the overlap between the Ce3+ emission and the Tb3+ excitation. The ET efficiency from the Ce3+ to Tb3+ ions reached 83.8% at y = 1.2 and a maximum of 94.6%. Finally, the optimized phosphor BYSO:0.12Ce3+,1.2Tb3+ had an internal quantum efficiency of 94.4% and had excellent thermal stability (96.1%@423 K). Our work pointed out the avenue to novel green phosphors with high efficiency and thermal stability by choosing appropriate host and construct efficient ET. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.4c00123 |