Detection of Mycoplasma hyopneumoniae viability using a PCR-based assay

Mycoplasma hyopneumoniae detection in clinical specimens is accomplished by PCR targeting bacterial DNA. However, the high stability of DNA and the lack of relationship between bacterial viability and DNA detection by PCR can lead to diagnostic interpretation issues. Bacterial messenger RNA is rapid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Veterinary microbiology 2024-05, Vol.292, p.110058-110058, Article 110058
Hauptverfasser: Canturri, Albert, Galina-Pantoja, Lucina, Vonnahme, Kimberly, Pieters, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mycoplasma hyopneumoniae detection in clinical specimens is accomplished by PCR targeting bacterial DNA. However, the high stability of DNA and the lack of relationship between bacterial viability and DNA detection by PCR can lead to diagnostic interpretation issues. Bacterial messenger RNA is rapidly degraded after cell death, and consequently, assays targeting mRNA detection can be used for the exclusive detection of viable bacterial cells. Therefore, this study aimed at developing a PCR-based assay for the detection of M. hyopneumoniae mRNA and at validating its applicability to differentiate viable from inert bacteria. Development of the RNA-based PCR encompassed studies to determine its analytical sensitivity, specificity, and repeatability, as well as its diagnostic accuracy. Comparisons between DNA and mRNA detection for the same target gene were performed to evaluate the ability of the RNA-based PCR to detect exclusively viable M. hyopneumoniae after bacterial inactivation using various methods. The RNA-based PCR was also compared to the DNA-based PCR as a tool to monitor the growth of M. hyopneumoniae in vitro. Under the conditions of this study, the developed RNA-based PCR assay detected only viable or very recently inactivated M. hyopneumoniae, while the DNA-based PCR consistently detected cells irrespective of their viability status. Changes in growth activity over time were only observable via RNA-based PCR. This viability PCR assay could be directly applied to evaluate the clearance of M. hyopneumoniae or to determine the viability of the bacterium at late stages of eradication programs.
ISSN:0378-1135
1873-2542
DOI:10.1016/j.vetmic.2024.110058