Normality Structures With Thermodynamic Equilibrium Points

Enriched by the nonlinear Onsager reciprocal relations and thermodynamic equilibrium points (Onsager, Phys. Rev., 37, pp. 405–406; 38, pp. 2265–2279), an extended normality structure by Rice (1971, J. Mech. Phys. Solids, 19, pp. 433–455) is established in this paper as a unified nonlinear thermodyna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mechanics 2007-09, Vol.74 (5), p.965-971
Hauptverfasser: Yang, Q., Wang, R. K., Xue, L. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 971
container_issue 5
container_start_page 965
container_title Journal of applied mechanics
container_volume 74
creator Yang, Q.
Wang, R. K.
Xue, L. J.
description Enriched by the nonlinear Onsager reciprocal relations and thermodynamic equilibrium points (Onsager, Phys. Rev., 37, pp. 405–406; 38, pp. 2265–2279), an extended normality structure by Rice (1971, J. Mech. Phys. Solids, 19, pp. 433–455) is established in this paper as a unified nonlinear thermodynamic theory of solids. It is revealed that the normality structure stems from the microscale irrotational thermodynamic fluxes. Within the extended normality structure, this paper focuses on the microscale thermodynamic mechanisms and significance of the convexity of flow potentials and yield surfaces. It is shown that the flow potential is convex if the conjugate force increment cannot not oppose the increment of the rates of local internal variables. For the Rice fluxes, the convexity condition reduces to the local rates being monotonic increasing functions with respect to their conjugate forces. The convexity of the flow potential provides the thermodynamic system a capability against the disturbance of the thermodynamic equilibrium point. It is proposed for time-independent behavior that the set of plastically admissible stresses determined by yield conditions corresponds to the set of thermodynamic equilibrium points. Based on that viewpoint, the intrinsic dissipation inequality is just the thermodynamic counterpart of the principle of maximum plastic dissipation and requires the convexity of the yield surfaces.
doi_str_mv 10.1115/1.2722772
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30116640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30116640</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-4e01fed057b229e744ec1c2474f3ed54be3c9c39609092e391474d07bc0b24d43</originalsourceid><addsrcrecordid>eNpF0E1LAzEQBuAgCtbqwbOXvSh42DqTZDeNNyn1A4oKVjyGbHaWRvbDJruH_ntXWvA0h3nmhXkZu0SYIWJ2hzOuOFeKH7EJZnyeahD5MZsAcEznWuSn7CzGbwDI5rmcsPvXLjS29v0u-ejD4PohUEy-fL9J1hsKTVfuWtt4lyy3g699EfzQJO-db_t4zk4qW0e6OMwp-3xcrhfP6ert6WXxsEqtQOhTSYAVlZCpgnNNSkpy6LhUshJUZrIg4bQTOgcNmpPQOK5KUIWDgstSiim72ef-hG47UOxN46OjurYtdUM0AhDzXMIIb_fQhS7GQJX5Cb6xYWcQzF87Bs2hndFeH0JtdLaugm2dj_8HGkWmlBrd1d7Z2JD57obQjr8aqRCyXPwC-3NsAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30116640</pqid></control><display><type>article</type><title>Normality Structures With Thermodynamic Equilibrium Points</title><source>ASME Transactions Journals (Current)</source><creator>Yang, Q. ; Wang, R. K. ; Xue, L. J.</creator><creatorcontrib>Yang, Q. ; Wang, R. K. ; Xue, L. J.</creatorcontrib><description>Enriched by the nonlinear Onsager reciprocal relations and thermodynamic equilibrium points (Onsager, Phys. Rev., 37, pp. 405–406; 38, pp. 2265–2279), an extended normality structure by Rice (1971, J. Mech. Phys. Solids, 19, pp. 433–455) is established in this paper as a unified nonlinear thermodynamic theory of solids. It is revealed that the normality structure stems from the microscale irrotational thermodynamic fluxes. Within the extended normality structure, this paper focuses on the microscale thermodynamic mechanisms and significance of the convexity of flow potentials and yield surfaces. It is shown that the flow potential is convex if the conjugate force increment cannot not oppose the increment of the rates of local internal variables. For the Rice fluxes, the convexity condition reduces to the local rates being monotonic increasing functions with respect to their conjugate forces. The convexity of the flow potential provides the thermodynamic system a capability against the disturbance of the thermodynamic equilibrium point. It is proposed for time-independent behavior that the set of plastically admissible stresses determined by yield conditions corresponds to the set of thermodynamic equilibrium points. Based on that viewpoint, the intrinsic dissipation inequality is just the thermodynamic counterpart of the principle of maximum plastic dissipation and requires the convexity of the yield surfaces.</description><identifier>ISSN: 0021-8936</identifier><identifier>EISSN: 1528-9036</identifier><identifier>DOI: 10.1115/1.2722772</identifier><identifier>CODEN: JAMCAV</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Physics ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Journal of applied mechanics, 2007-09, Vol.74 (5), p.965-971</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a310t-4e01fed057b229e744ec1c2474f3ed54be3c9c39609092e391474d07bc0b24d43</citedby><cites>FETCH-LOGICAL-a310t-4e01fed057b229e744ec1c2474f3ed54be3c9c39609092e391474d07bc0b24d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906,38501</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19135777$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Q.</creatorcontrib><creatorcontrib>Wang, R. K.</creatorcontrib><creatorcontrib>Xue, L. J.</creatorcontrib><title>Normality Structures With Thermodynamic Equilibrium Points</title><title>Journal of applied mechanics</title><addtitle>J. Appl. Mech</addtitle><description>Enriched by the nonlinear Onsager reciprocal relations and thermodynamic equilibrium points (Onsager, Phys. Rev., 37, pp. 405–406; 38, pp. 2265–2279), an extended normality structure by Rice (1971, J. Mech. Phys. Solids, 19, pp. 433–455) is established in this paper as a unified nonlinear thermodynamic theory of solids. It is revealed that the normality structure stems from the microscale irrotational thermodynamic fluxes. Within the extended normality structure, this paper focuses on the microscale thermodynamic mechanisms and significance of the convexity of flow potentials and yield surfaces. It is shown that the flow potential is convex if the conjugate force increment cannot not oppose the increment of the rates of local internal variables. For the Rice fluxes, the convexity condition reduces to the local rates being monotonic increasing functions with respect to their conjugate forces. The convexity of the flow potential provides the thermodynamic system a capability against the disturbance of the thermodynamic equilibrium point. It is proposed for time-independent behavior that the set of plastically admissible stresses determined by yield conditions corresponds to the set of thermodynamic equilibrium points. Based on that viewpoint, the intrinsic dissipation inequality is just the thermodynamic counterpart of the principle of maximum plastic dissipation and requires the convexity of the yield surfaces.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0021-8936</issn><issn>1528-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LAzEQBuAgCtbqwbOXvSh42DqTZDeNNyn1A4oKVjyGbHaWRvbDJruH_ntXWvA0h3nmhXkZu0SYIWJ2hzOuOFeKH7EJZnyeahD5MZsAcEznWuSn7CzGbwDI5rmcsPvXLjS29v0u-ejD4PohUEy-fL9J1hsKTVfuWtt4lyy3g699EfzQJO-db_t4zk4qW0e6OMwp-3xcrhfP6ert6WXxsEqtQOhTSYAVlZCpgnNNSkpy6LhUshJUZrIg4bQTOgcNmpPQOK5KUIWDgstSiim72ef-hG47UOxN46OjurYtdUM0AhDzXMIIb_fQhS7GQJX5Cb6xYWcQzF87Bs2hndFeH0JtdLaugm2dj_8HGkWmlBrd1d7Z2JD57obQjr8aqRCyXPwC-3NsAQ</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Yang, Q.</creator><creator>Wang, R. K.</creator><creator>Xue, L. J.</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20070901</creationdate><title>Normality Structures With Thermodynamic Equilibrium Points</title><author>Yang, Q. ; Wang, R. K. ; Xue, L. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-4e01fed057b229e744ec1c2474f3ed54be3c9c39609092e391474d07bc0b24d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Q.</creatorcontrib><creatorcontrib>Wang, R. K.</creatorcontrib><creatorcontrib>Xue, L. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Q.</au><au>Wang, R. K.</au><au>Xue, L. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normality Structures With Thermodynamic Equilibrium Points</atitle><jtitle>Journal of applied mechanics</jtitle><stitle>J. Appl. Mech</stitle><date>2007-09-01</date><risdate>2007</risdate><volume>74</volume><issue>5</issue><spage>965</spage><epage>971</epage><pages>965-971</pages><issn>0021-8936</issn><eissn>1528-9036</eissn><coden>JAMCAV</coden><abstract>Enriched by the nonlinear Onsager reciprocal relations and thermodynamic equilibrium points (Onsager, Phys. Rev., 37, pp. 405–406; 38, pp. 2265–2279), an extended normality structure by Rice (1971, J. Mech. Phys. Solids, 19, pp. 433–455) is established in this paper as a unified nonlinear thermodynamic theory of solids. It is revealed that the normality structure stems from the microscale irrotational thermodynamic fluxes. Within the extended normality structure, this paper focuses on the microscale thermodynamic mechanisms and significance of the convexity of flow potentials and yield surfaces. It is shown that the flow potential is convex if the conjugate force increment cannot not oppose the increment of the rates of local internal variables. For the Rice fluxes, the convexity condition reduces to the local rates being monotonic increasing functions with respect to their conjugate forces. The convexity of the flow potential provides the thermodynamic system a capability against the disturbance of the thermodynamic equilibrium point. It is proposed for time-independent behavior that the set of plastically admissible stresses determined by yield conditions corresponds to the set of thermodynamic equilibrium points. Based on that viewpoint, the intrinsic dissipation inequality is just the thermodynamic counterpart of the principle of maximum plastic dissipation and requires the convexity of the yield surfaces.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2722772</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8936
ispartof Journal of applied mechanics, 2007-09, Vol.74 (5), p.965-971
issn 0021-8936
1528-9036
language eng
recordid cdi_proquest_miscellaneous_30116640
source ASME Transactions Journals (Current)
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
Physics
Solid mechanics
Structural and continuum mechanics
title Normality Structures With Thermodynamic Equilibrium Points
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normality%20Structures%20With%20Thermodynamic%20Equilibrium%20Points&rft.jtitle=Journal%20of%20applied%20mechanics&rft.au=Yang,%20Q.&rft.date=2007-09-01&rft.volume=74&rft.issue=5&rft.spage=965&rft.epage=971&rft.pages=965-971&rft.issn=0021-8936&rft.eissn=1528-9036&rft.coden=JAMCAV&rft_id=info:doi/10.1115/1.2722772&rft_dat=%3Cproquest_cross%3E30116640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30116640&rft_id=info:pmid/&rfr_iscdi=true