Normality Structures With Thermodynamic Equilibrium Points
Enriched by the nonlinear Onsager reciprocal relations and thermodynamic equilibrium points (Onsager, Phys. Rev., 37, pp. 405–406; 38, pp. 2265–2279), an extended normality structure by Rice (1971, J. Mech. Phys. Solids, 19, pp. 433–455) is established in this paper as a unified nonlinear thermodyna...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics 2007-09, Vol.74 (5), p.965-971 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 971 |
---|---|
container_issue | 5 |
container_start_page | 965 |
container_title | Journal of applied mechanics |
container_volume | 74 |
creator | Yang, Q. Wang, R. K. Xue, L. J. |
description | Enriched by the nonlinear Onsager reciprocal relations and
thermodynamic equilibrium points (Onsager, Phys. Rev., 37, pp.
405–406; 38, pp.
2265–2279), an extended normality structure by
Rice
(1971, J. Mech. Phys. Solids, 19, pp. 433–455) is
established in this paper as a unified nonlinear thermodynamic theory of solids.
It is revealed that the normality structure stems from the microscale
irrotational thermodynamic fluxes. Within the extended normality structure, this
paper focuses on the microscale thermodynamic mechanisms and significance of the
convexity of flow potentials and yield surfaces. It is shown that the flow
potential is convex if the conjugate force increment cannot not oppose the
increment of the rates of local internal variables. For the Rice fluxes, the
convexity condition reduces to the local rates being monotonic increasing
functions with respect to their conjugate forces. The convexity of the flow
potential provides the thermodynamic system a capability against the disturbance
of the thermodynamic equilibrium point. It is proposed for time-independent
behavior that the set of plastically admissible stresses determined by yield
conditions corresponds to the set of thermodynamic equilibrium points. Based on
that viewpoint, the intrinsic dissipation inequality is just the thermodynamic
counterpart of the principle of maximum plastic dissipation and requires the
convexity of the yield surfaces. |
doi_str_mv | 10.1115/1.2722772 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_30116640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30116640</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-4e01fed057b229e744ec1c2474f3ed54be3c9c39609092e391474d07bc0b24d43</originalsourceid><addsrcrecordid>eNpF0E1LAzEQBuAgCtbqwbOXvSh42DqTZDeNNyn1A4oKVjyGbHaWRvbDJruH_ntXWvA0h3nmhXkZu0SYIWJ2hzOuOFeKH7EJZnyeahD5MZsAcEznWuSn7CzGbwDI5rmcsPvXLjS29v0u-ejD4PohUEy-fL9J1hsKTVfuWtt4lyy3g699EfzQJO-db_t4zk4qW0e6OMwp-3xcrhfP6ert6WXxsEqtQOhTSYAVlZCpgnNNSkpy6LhUshJUZrIg4bQTOgcNmpPQOK5KUIWDgstSiim72ef-hG47UOxN46OjurYtdUM0AhDzXMIIb_fQhS7GQJX5Cb6xYWcQzF87Bs2hndFeH0JtdLaugm2dj_8HGkWmlBrd1d7Z2JD57obQjr8aqRCyXPwC-3NsAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30116640</pqid></control><display><type>article</type><title>Normality Structures With Thermodynamic Equilibrium Points</title><source>ASME Transactions Journals (Current)</source><creator>Yang, Q. ; Wang, R. K. ; Xue, L. J.</creator><creatorcontrib>Yang, Q. ; Wang, R. K. ; Xue, L. J.</creatorcontrib><description>Enriched by the nonlinear Onsager reciprocal relations and
thermodynamic equilibrium points (Onsager, Phys. Rev., 37, pp.
405–406; 38, pp.
2265–2279), an extended normality structure by
Rice
(1971, J. Mech. Phys. Solids, 19, pp. 433–455) is
established in this paper as a unified nonlinear thermodynamic theory of solids.
It is revealed that the normality structure stems from the microscale
irrotational thermodynamic fluxes. Within the extended normality structure, this
paper focuses on the microscale thermodynamic mechanisms and significance of the
convexity of flow potentials and yield surfaces. It is shown that the flow
potential is convex if the conjugate force increment cannot not oppose the
increment of the rates of local internal variables. For the Rice fluxes, the
convexity condition reduces to the local rates being monotonic increasing
functions with respect to their conjugate forces. The convexity of the flow
potential provides the thermodynamic system a capability against the disturbance
of the thermodynamic equilibrium point. It is proposed for time-independent
behavior that the set of plastically admissible stresses determined by yield
conditions corresponds to the set of thermodynamic equilibrium points. Based on
that viewpoint, the intrinsic dissipation inequality is just the thermodynamic
counterpart of the principle of maximum plastic dissipation and requires the
convexity of the yield surfaces.</description><identifier>ISSN: 0021-8936</identifier><identifier>EISSN: 1528-9036</identifier><identifier>DOI: 10.1115/1.2722772</identifier><identifier>CODEN: JAMCAV</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Physics ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Journal of applied mechanics, 2007-09, Vol.74 (5), p.965-971</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a310t-4e01fed057b229e744ec1c2474f3ed54be3c9c39609092e391474d07bc0b24d43</citedby><cites>FETCH-LOGICAL-a310t-4e01fed057b229e744ec1c2474f3ed54be3c9c39609092e391474d07bc0b24d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906,38501</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19135777$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Q.</creatorcontrib><creatorcontrib>Wang, R. K.</creatorcontrib><creatorcontrib>Xue, L. J.</creatorcontrib><title>Normality Structures With Thermodynamic Equilibrium Points</title><title>Journal of applied mechanics</title><addtitle>J. Appl. Mech</addtitle><description>Enriched by the nonlinear Onsager reciprocal relations and
thermodynamic equilibrium points (Onsager, Phys. Rev., 37, pp.
405–406; 38, pp.
2265–2279), an extended normality structure by
Rice
(1971, J. Mech. Phys. Solids, 19, pp. 433–455) is
established in this paper as a unified nonlinear thermodynamic theory of solids.
It is revealed that the normality structure stems from the microscale
irrotational thermodynamic fluxes. Within the extended normality structure, this
paper focuses on the microscale thermodynamic mechanisms and significance of the
convexity of flow potentials and yield surfaces. It is shown that the flow
potential is convex if the conjugate force increment cannot not oppose the
increment of the rates of local internal variables. For the Rice fluxes, the
convexity condition reduces to the local rates being monotonic increasing
functions with respect to their conjugate forces. The convexity of the flow
potential provides the thermodynamic system a capability against the disturbance
of the thermodynamic equilibrium point. It is proposed for time-independent
behavior that the set of plastically admissible stresses determined by yield
conditions corresponds to the set of thermodynamic equilibrium points. Based on
that viewpoint, the intrinsic dissipation inequality is just the thermodynamic
counterpart of the principle of maximum plastic dissipation and requires the
convexity of the yield surfaces.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0021-8936</issn><issn>1528-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LAzEQBuAgCtbqwbOXvSh42DqTZDeNNyn1A4oKVjyGbHaWRvbDJruH_ntXWvA0h3nmhXkZu0SYIWJ2hzOuOFeKH7EJZnyeahD5MZsAcEznWuSn7CzGbwDI5rmcsPvXLjS29v0u-ejD4PohUEy-fL9J1hsKTVfuWtt4lyy3g699EfzQJO-db_t4zk4qW0e6OMwp-3xcrhfP6ert6WXxsEqtQOhTSYAVlZCpgnNNSkpy6LhUshJUZrIg4bQTOgcNmpPQOK5KUIWDgstSiim72ef-hG47UOxN46OjurYtdUM0AhDzXMIIb_fQhS7GQJX5Cb6xYWcQzF87Bs2hndFeH0JtdLaugm2dj_8HGkWmlBrd1d7Z2JD57obQjr8aqRCyXPwC-3NsAQ</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Yang, Q.</creator><creator>Wang, R. K.</creator><creator>Xue, L. J.</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20070901</creationdate><title>Normality Structures With Thermodynamic Equilibrium Points</title><author>Yang, Q. ; Wang, R. K. ; Xue, L. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-4e01fed057b229e744ec1c2474f3ed54be3c9c39609092e391474d07bc0b24d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Q.</creatorcontrib><creatorcontrib>Wang, R. K.</creatorcontrib><creatorcontrib>Xue, L. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Q.</au><au>Wang, R. K.</au><au>Xue, L. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normality Structures With Thermodynamic Equilibrium Points</atitle><jtitle>Journal of applied mechanics</jtitle><stitle>J. Appl. Mech</stitle><date>2007-09-01</date><risdate>2007</risdate><volume>74</volume><issue>5</issue><spage>965</spage><epage>971</epage><pages>965-971</pages><issn>0021-8936</issn><eissn>1528-9036</eissn><coden>JAMCAV</coden><abstract>Enriched by the nonlinear Onsager reciprocal relations and
thermodynamic equilibrium points (Onsager, Phys. Rev., 37, pp.
405–406; 38, pp.
2265–2279), an extended normality structure by
Rice
(1971, J. Mech. Phys. Solids, 19, pp. 433–455) is
established in this paper as a unified nonlinear thermodynamic theory of solids.
It is revealed that the normality structure stems from the microscale
irrotational thermodynamic fluxes. Within the extended normality structure, this
paper focuses on the microscale thermodynamic mechanisms and significance of the
convexity of flow potentials and yield surfaces. It is shown that the flow
potential is convex if the conjugate force increment cannot not oppose the
increment of the rates of local internal variables. For the Rice fluxes, the
convexity condition reduces to the local rates being monotonic increasing
functions with respect to their conjugate forces. The convexity of the flow
potential provides the thermodynamic system a capability against the disturbance
of the thermodynamic equilibrium point. It is proposed for time-independent
behavior that the set of plastically admissible stresses determined by yield
conditions corresponds to the set of thermodynamic equilibrium points. Based on
that viewpoint, the intrinsic dissipation inequality is just the thermodynamic
counterpart of the principle of maximum plastic dissipation and requires the
convexity of the yield surfaces.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2722772</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8936 |
ispartof | Journal of applied mechanics, 2007-09, Vol.74 (5), p.965-971 |
issn | 0021-8936 1528-9036 |
language | eng |
recordid | cdi_proquest_miscellaneous_30116640 |
source | ASME Transactions Journals (Current) |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Inelasticity (thermoplasticity, viscoplasticity...) Physics Solid mechanics Structural and continuum mechanics |
title | Normality Structures With Thermodynamic Equilibrium Points |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normality%20Structures%20With%20Thermodynamic%20Equilibrium%20Points&rft.jtitle=Journal%20of%20applied%20mechanics&rft.au=Yang,%20Q.&rft.date=2007-09-01&rft.volume=74&rft.issue=5&rft.spage=965&rft.epage=971&rft.pages=965-971&rft.issn=0021-8936&rft.eissn=1528-9036&rft.coden=JAMCAV&rft_id=info:doi/10.1115/1.2722772&rft_dat=%3Cproquest_cross%3E30116640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30116640&rft_id=info:pmid/&rfr_iscdi=true |